
Eric Heitz, Kenneth Vanhoey, omas Chambon and Laurent Belcour
A Sliced Wasserstein Loss for Neural Texture Synthesis

Conclusion: No existing loss function is simple to implement, captures
relevant statistics completely, and has tractable complexity.

All our results are produced using our single loss term.

[1] Texture synthesis using convolutional neural networks, Gatys et al., NIPS 2015
[2] Style transfer by relaxed optimal transport and self-similarity, Kolkin et al., CVPR 2019
[3] e contextual loss for image transformation with non-aligned data, Mechrez et al., ECCV 2018
[4] Stable and controllable neural texture synthesis and style transfer using histogram losses, Risser et al., Arxiv 2017
[5] Texture synthesis through convolutional neural networks and spectrum constraints, Liu et al., ICPR 2016
[6] Deep correlations for texture synthesis, Sendik et al., SIGGRAPH 2017
[7] Non-stationary texture synthesis by adversarial expansion, Zhou et al., SIGGRAPH 2018
[8] Texture mixer: a network for controllable synthesis and interpolation of texture, Yu et al., CVPR 2019
[9] N-dimensional probability density function transfer and its applications to color transfer, Pitie et al., ICCV 2005

ResultsSliced Wasserstein Loss
Neural Texture Synthesis (NTS) has two direct applications:

(1) Optimizing a new texture (2) Training a texture generator

NTS relies on a loss function to capture distance in texture space.
e rich space of deep feature activations is
typically used to compute distances in.

Gram-Matrix loss [1] captures correlation between feature channels.

[1]

[1]

Incomplete
Insufficiently captures
texture (e.g., contrast).

1. Second-order statistics

Optimal transport losses capture the full histogram of feature distribution.

Bad complexity
Requires

approximations.
Fails on NTS.

[2]
[3]

2. Full histogram (i.e., any-order statistics)

Difficult to use
Requires tedious tuning

of relative weights.
Compromises convergence.

3. Mixtures of losses

Existing Loss Functions for Neural Texture Synthesis

Context: Neural Texture Synthesis and Style Transfer

Paper and code available at
bit.ly/3wJHNKJ

We introduce the new loss function . It does not rely on a subset of
feature-activation statistics. Rather, evaluates the sliced Wasserstein
distance [9] between n-dimensional histograms of feature activations.

H xW n-dimensional features n-dimensional histogram

1. Draw K random 1D slices
(direction) in nD space

2. Project the nD histogram
on each 1D slice

3. Compute L2 distance
between (sorted) 1D vectors

Efficient stochastic histogram distance measurement thanks to slicing [9].
e expectation is the nD histogram distance in the optimal transport
sense.

Spatial Constraints

H x W (n+1)-d features (n+1)-d histogram

 also supports texture synthesis with spatial constraints. e trick is
to concatenate a 1D label or periodicity tag to the feature space. Features
of a similar tag are naturally grouped in the (n+1)D histogram: we can
proceed using in (n+1)D.

Texture optimization

[1]

 improves over Gram

Spatial constraints

Tags preserve periodicity

w/o
tag

w/
tag

Tags preserve labels

Other results

 is 1.7 - 2.8x more costly than Gram

 allows to train a multi-texture generator

 encompasses : minimizing
it reduces . e opposite is false.

A good loss should capture complete stationary statistics of deep feature
activations, be simple to implement and tractable to run.

