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Abstract

Low-end and compact mobile cameras demonstrate lim-

ited photo quality mainly due to space, hardware and bud-

get constraints. In this work, we propose a deep learning

solution that translates photos taken by cameras with lim-

ited capabilities into DSLR-quality photos automatically.

We tackle this problem by introducing a weakly supervised

photo enhancer (WESPE) – a novel image-to-image Gen-

erative Adversarial Network-based architecture. The pro-

posed model is trained by under weak supervision: un-

like previous works, there is no need for strong supervision

in the form of a large annotated dataset of aligned origi-

nal/enhanced photo pairs. The sole requirement is two dis-

tinct datasets: one from the source camera, and one com-

posed of arbitrary high-quality images that can be generally

crawled from the Internet – the visual content they exhibit

may be unrelated. In this work, we emphasize on extensive

evaluation of obtained results. Besides standard objective

metrics and subjective user study, we train a virtual rater

in the form of a separate CNN that mimics human raters

on Flickr data and use this network to get reference scores

for both original and enhanced photos. Our experiments on

the DPED, KITTI and Cityscapes datasets as well as pic-

tures from several generations of smartphones demonstrate

that WESPE produces comparable or improved qualitative

results with state-of-the-art strongly supervised methods.

1. Introduction

The ever-increasing quality of camera sensors allows us
to photograph scenes with unprecedented detail and color.
But as one gets used to better quality standards, photos cap-
tured just a few years ago with older hardware look dull and
outdated. Analogously, despite incredible advancement in
quality of images captured by mobile devices, compact sen-
sors and lenses make DSLR-quality unattainable for them,
leaving casual users with a constant dilemma of relying on
their lightweight mobile device or transporting a heavier-
weight camera around on a daily basis. However, the second
option may not even be possible for a number of other ap-
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Figure 1: Cityscapes image enhanced by our method.

plications such as autonomous driving or video surveillance
systems, where primitive cameras are usually employed.

In general, image enhancement can be done manually
(e.g., by a graphical artist) or semi-automatically using spe-
cialized software capable of histogram equalization, photo
sharpening, contrast adjustment, etc. The quality of the re-
sult in this case significantly depends on user skills and allo-
cated time, and thus is not doable by non-graphical experts
on a daily basis, or not applicable in case of real-time or
large-scale data processing. A fundamentally different op-
tion is to train various learning-based methods that allow
to automatically transform image style or to perform image
enhancement. Yet, one of the major bottlenecks of these
solutions is the need for strong supervision using matched
before/after training pairs of images. This requirement is
often the source of a strong limitation of color/texture trans-
fer [23] and photo enhancement [13] methods.

In this paper, we present a novel weakly supervised so-
lution for the image enhancement problem to deliver our-
selves from the above constraints. That is, we propose a
deep learning architecture that can be trained to enhance im-
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ages by mapping them from the domain of a given source
camera into the domain of high-quality photos (supposedly
taken by high-end DSLRs) while not requiring any corre-
spondence or relation between the images from these do-
mains: only two separate photo collections representing
these domains are needed for training the network. To
achieve this, we take advantage of two novel advancements
in Generative Adversarial Networks (GAN) and Convolu-
tional Neural Networks (CNN): i) transitive CNNs to map
the enhanced image back to the space of source images so as
to relax the need of paired ground truth photos [36], and ii)

loss functions combining color, content and texture loss to
learn photorealistic image quality [13]. The key advantage
of the method is that it can be learned easily: the training
data is trivial to obtain for any camera and training takes
just a few hours. Yet, quality-wise, our results still surpass
traditional enhancers and compete with state of the art (fully
supervised) methods by producing artifact-less results.

Contributions. Enhanced images improve the non-
enhanced ones in several aspects, including colorization,
resolution and sharpness. Our contributions include:

• WESPE, a generic method for learning a model that
enhances source images into DSLR-quality ones,

• a transitive CNN-GAN architecture, made suitable for
the task of image enhancement and image domain
transfer by combining state of the art losses with a con-
tent loss expressed on the input image,

• large-scale experiments on several publicly available
datasets with a variety of camera types, including sub-
jective rating and comparison to the state of the art en-
hancement methods,

• a Flickr Faves Score (FFS) dataset consisting of 16K
HD resolution Flickr photos with an associated num-
ber of likes and views that we use for training a sepa-
rate scoring CNN to independently assess image qual-
ity of the photos throughout our experiments,

• openly available models and code1, that we progres-
sively augment with additional camera models / types.

2. Related work

Automatic photo enhancement can be considered as a
typical – if not the ultimate – computational photography
task. To devise our solution, we build upon three sub-fields:
style transfer, image restoration and general-purpose image-
to-image enhancers.

2.1. Style transfer

The goal of style transfer is to apply the style of one
image to the (visual) content of another. Traditional tex-
ture/color/style transfer techniques [7, 11, 20, 23] rely on an

1http://people.ee.ethz.ch/~ihnatova/wespe.html

exemplar before/after pair that defines the transfer to be ap-
plied. The exemplar pair should contain visual content hav-
ing a sufficient level of analogy to the target image’s con-
tent which is hard to find, and this hinders its automatic
and mass usage. More recently, neural style transfer alle-
viates this requirement [8, 29]. It builds on the assumption
that the shallower layers of a deep CNN classifier – or more
precisely, their correlations – characterize the style of an
image, while the deeper ones represent semantic content. A
neural network is then used to obtain an image matching the
style of one input and the content of another. Finally, gen-
erative adversarial networks (GAN) append a discriminator
CNN to a generator network [10]. The role of the former is
to distinguish between two domains of images: e.g., those
having the style of the target image and those produced by
the generator. It is jointly trained with the generator, whose
role is in turn to fool the discriminator by generating an im-
age in the right domain, i.e., the domain of images of correct
style. We exploit this logic to force the produced images to
be in the domain of target high-quality photos.

2.2. Image restoration

Image quality enhancement has traditionally been ad-
dressed through a list of its sub-tasks, like super-resolution,
deblurring, dehazing, denoising, colorization and image ad-
justment. Our goal of hallucinating high-end images from
low-end ones encompasses all these enhancements. Many
of these tasks have recently seen the arrival of successful
methods driven by deep learning phrased as image-to-image
translation problems. However, a common property of these
works is that they are targeted at removing artifacts added

artificially to clean images, thus requiring to model all pos-
sible distortions. Reproducing the flaws of the optics of one
camera compared to a high-end reference one is close to
impossible, let alone repeating this for a large list of cam-
era pairs. Nevertheless, many useful ideas have emerged in
these works, their brief review is given below.

The goal of image super-resolution is to restore the orig-
inal image from its downscaled version. Many end-to-end
CNN-based solutions exist now [6, 16, 22, 25, 28]. Initial
methods used pixel-wise mean-squared-error (MSE) loss
functions, which often generated blurry results. Losses
based on the activations of (a number of) VGG-layers [15]
and GANs [17] are more capable of recovering photoreal-
istic results, including high-frequency components, hence
produce state of the art results. In our work, we incorporate
both the GAN architectures and VGG-based loss functions.

Image colorization [4, 21, 34], which attempts to regress
the 3 RGB channels from images that were reduced to
single-channel grayscale, strongly benefits from the GAN
architecture too [14]. Image denoising, deblurring and de-

hazing [3, 12, 19, 27, 35], photographic style control [31]
and transfer [18], as well as exposure correction [33] are

805

http://people.ee.ethz.ch/~ihnatova/wespe.html


another improvements and adjustments that are included in
our learned model. As opposed to mentioned related work,
there is no need to manually model these effects in our case.

2.3. General­purpose image­to­image enhancers

We build our solution upon very recent advances in
image-to-image translation networks. Isola et al. [14]
present a general-purpose translator that takes advantage of
GANs to learn the loss function depending on the domain
the target image should be in. While it achieves promising
results when transferring between very different domains
(e.g., aerial image to street map), it lacks photorealism when
generating photos: results are often blurry and with strong
checkerboard artifacts. Compared to our work, it needs
strong supervision, in the form of many before/after exam-
ples provided at training time.

Zhu et al. [36] loosen this constraint by expressing the
loss in the space of input rather than output images, tak-
ing advantage of a backward mapping CNN that transforms
the output back into the space of input images. We ap-
ply a similar idea in this work. However, our CNN ar-
chitecture and loss functions are based on different ideas:
fully convolutional networks and elaborated losses allow
us to achieve photorealistic results, while eliminating typ-
ical artifacts (like blur and checkerboard) and limitations of
encoder-decoder networks.

Finally, Ignatov et al. [13] propose an end-to-end en-
hancer achieving photorealistic results for arbitrary-sized
images due to a composition of content, texture and color
losses. However, it is trained with a strong supervision re-
quirement for which a dataset of aligned ground truth im-
age pairs taken by different cameras was assembled (i.e.,
the DPED dataset). We build upon their loss functions to
achieve photorealism as well, while adapting them to the
new architecture suitable for our weakly supervised learn-
ing setting. While we do not need a ground truth aligned
dataset, we use DPED to report the performance on. Addi-
tionally, we provide the results on public datasets (KITTI,
Cityscapes) and several newly collected datasets for smart-
phone cameras.

3. Proposed method

Our goal is to learn a mapping from a source domain X

(e.g., defined by a low-end digital camera) to a target do-
main Y (e.g., defined by a collection of captured or crawled
high-quality images). The inputs are unpaired training im-
age samples x ∈ X and y ∈Y . As illustrated in Figure 2, our
model consists of a generative mapping G : X → Y paired
with an inverse generative mapping F : Y → X . To measure
content consistency between the mapping G(x) and the in-
put image x, a content loss based on VGG-19 features is de-
fined between the original and reconstructed images x and
x̃ = (F ◦G)(x), respectively. Defining the content loss in
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Figure 2: Proposed WESPE architecture.

the input image domain allows us to circumvent the need of
before/after training pairs. Two adversarial discriminators
Dc and Dt and total variation (TV) complete our loss defi-
nition. Dc aims to distinguish between high-quality image
y and enhanced image ỹ = G(x) based on image colors, and
Dt based on image texture. As a result, our objective com-
prises: i) content consistency loss to ensure G preserves x’s
content, ii) two adversarial losses ensuring generated im-
ages ỹ lie in the target domain Y : a color loss and a texture
loss, and iii) TV loss to regularize towards smoother results.
We now detail each of these loss terms.

3.1. Content consistency loss. We define the content con-

sistency loss in the input image domain X : that is, on x

and its reconstruction x̃ = F(ỹ) = F ◦G(x) (inverse map-
ping from the enhanced image), as shown in Figure 2. Our
network is trained for both the direct G and inverse F map-
ping simultaneously, aiming at strong content similarity be-
tween the original and enhanced image. We found pixel-
level losses too restrictive in this case, hence we choose
a perceptual content loss based on ReLu activations of the
VGG-19 network [26], inspired by [13,15,17]. It is defined
as the l2-norm between feature representations of the input
image x and the recovered image x̃:

Lcontent =
1

C jH jWj

‖ψ j

(

x
)

−ψ j

(

x̃
)

‖, (1)

where ψ j is the feature map from the j-th VGG-19 convo-
lutional layer and C j, H j and Wj are the number, height and
width of the feature maps, respectively.

3.2. Adversarial color loss. Image color quality is mea-
sured using an adversarial discriminator Dc that is trained
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to differentiate between the blurred versions of enhanced ỹb

and high-quality yb images:

yb(i, j) = ∑
k,l

y(i+ k, j+ l) ·Gk,l , (2)

where Gk,l = Aexp
(

− (k−µx)
2

2σx
−

(l−µy)
2

2σy

)

defines Gaussian
blur with A = 0.053, µx,y = 0, and σx,y = 3 set empirically.

The main idea here is that the discriminator should learn
the differences in brightness, contrast and major colors be-
tween low– and high-quality images, while it should avoid
texture and content comparison. A constant σ was defined
experimentally to be the smallest value that ensures texture
and content eliminations. The loss itself is defined as a stan-
dard generator objective, as used in GAN training:

Lcolor =−∑
i

logDc(G(x)b). (3)

Thus, color loss forces the enhanced images to have similar
color distributions as the target high-quality pictures.

3.3. Adversarial texture loss. Similarly to color, image
texture quality is also assessed by an adversarial discrimina-
tor Dt . This is applied to grayscale images and is trained to
predict whether a given image was artificially enhanced (ỹg)
or is a “true” native high-quality image (yg). As in the pre-
vious case, the network is trained to minimize the cross-
entropy loss function, the loss is defined as:

Ltexture =−∑
i

logDt(G(x)g). (4)

As a result, minimizing this loss will push the generator to
produce images of the domain of native high-quality ones.

3.4. TV loss. To impose spatial smoothness of the gener-
ated images we also add a total variation loss [2] defined as
follows:

Ltv =
1

CHW
‖∇xG(x)+∇yG(x)‖, (5)

where C, H, W are dimensions of the generated image G(x).

3.5. Sum of losses. The final WESPE loss is composed of
a linear combination of the four aforementioned losses:

Ltotal =Lcontent + 5 ·10−3 (Lcolor+Ltexture)+10 Ltv. (6)

The weights were picked based on preliminary experiments
on our training data.

3.6. Network architecture and training details. The
overall architecture of the system is illustrated in Figure 2.
Both generative and inverse generative networks G and
F are fully-convolutional residual CNNs with four resid-
ual blocks, their architecture was adapted from [13]. The
discriminator CNNs consist of five convolutional and one

fully-connected layer with 1024 neurons, followed by the
last layer with a sigmoid activation function on top of it.
The first, second and fifth convolutional layers are strided
with a step size of 4, 2 and 2, respectively. For each dataset
the train/test splits are as shown in Tables 2 and 4.

The network was trained on an NVIDIA Titan X GPU for
20K iterations using a batch size of 30 and the size of the
input patches was 100×100 pixels. The parameters of the
networks were optimized using the Adam algorithm. The
experimental setup was identical in all experiments.

4. Experiments

To assess the abilities and quality of the proposed net-
work (WESPE), we apply a series of experiments cover-
ing several cameras and datasets. We also compare against
a commercial software baseline (the Apple Photos image
enhancement software, or APE, version 2.0) and the latest
state of the art in the field by Ignatov et al. [13], that uses
learning under full supervision. We start our experiments
by doing a full-reference quantitative evaluation of the pro-
posed approach in section 4.1, using the ground truth DPED
dataset used for supervised training by Ignatov et al. [13].
WESPE however is unsupervised, so it can be applied to
any dataset in the wild as no ground truth enhanced image
is needed for training. In section 4.2 we apply WESPE on
such datasets of various nature and visual quality, and evalu-
ate quantitatively using no-reference quality metrics. Since
the main goal of WESPE is qualitative performance which
is not always reflected by conventional metrics, we addi-
tionally use subjective evaluation of the obtained results.
Section 4.3 presents a study involving human raters, and in
section 4.4 we build and use a Flickr faves score emulator to
emulate human rating on a large scale. For all experiments,
we also provide qualitative visual results.

4.1. Full­reference evaluation

In this section, we perform our experiments on the the
DPED dataset (see Table 2) that was initially proposed for
learning a photo enhancer with full supervision [13]. DPED
is composed of images from three smartphones with low –to
middle-end cameras (i.e., iPhone 3GS, BlackBerry Passport
and Sony Xperia Z) paired with images of the same scenes
taken by a high-end DSLR camera (i.e., Canon 70D) with
pixel alignment. Thanks to this pixel-aligned ground truth
before/after data, we can exploit full-reference image qual-
ity metrics to compare the enhanced test images with the
ground truth high-quality ones. For this we use both the
Point Signal-to-Noise Ratio (PSNR) and the structural simi-
larity index measure (SSIM) [30]. The former measures the
amount of signal lost w.r.t. a reference signal (e.g., an im-
age), the latter compares two images’ similarity in terms of
visually structured elements and is known for its improved
correlation with human perception, surpassing PSNR.
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Figure 3: From left to right, top to bottom: original iPhone 3GS photo and the same image after applying, resp.: Apple Photo
Enhancer, WESPE trained on DPED, WESPE trained on DIV2K, Ignatov et al. [13], and the corresponding DSLR image.

We adhere to the setup of [13] and train our model to
map source photos to the domain of target DSLR images for
each of three mobile cameras from the DPED dataset sepa-
rately. Note that we use the DSLR photos in weak supervi-
sion only (without exploiting the pairwise correspondence
between the source/target images): the adversarial discrim-
inators are trained at each iteration with a random positive
(i.e., DSLR) image and a random negative (i.e., non-DSLR)
one. For each mobile phone camera, we train two networks
with different target images: first using the original DPED
DSLR photos as target (noted "WESPE [DPED]"), second
using the high-quality pictures from the DIV2K dataset [1]
(noted WESPE [DIV2K]). Full-reference (PSNR, SSIM)
scores calculated w.r.t. the DPED ground truth enhanced
images are given in Table 1.

Our WESPE method trained with the DPED DSLR tar-
get performs better than the baseline method (APE). Con-
sidering the better SSIM metric only, it is even almost
as good as the network in [13] that uses a fully super-
vised approach and requires pixel-aligned ground truth im-
ages. WESPE trained on DIV2K images as target (WESPE
[DIV2K]) and tested w.r.t. DPED images degrades PSNR
and SSIM scores compared to WESPE [DPED], but still re-
mains above APE. This is unsurprising as we are measuring
proximity to known ground truth images laying in the do-

Table 1: Average PSNR and SSIM results on DPED test
images. Best results are in bold.

DPED images
APE

Weakly Supervised Fully Supervised
WESPE [DIV2K] WESPE [DPED] [13]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
iPhone 17.28 0.86 17.76 0.88 18.11 0.90 21.35 0.92

BlackBerry 18.91 0.89 16.71 0.91 16.78 0.91 20.66 0.93

Sony 19.45 0.92 20.05 0.89 20.29 0.93 22.01 0.94

main of DPED DSLR photos (and not DIV2K): being close
to it does not necessarily imply looking good. Visually (see
Figs. 3 and 4), WESPE [DIV2K] seem to show crisper col-
ors and we hypothesize they may be preferable, albeit fur-
ther away from the ground truth image. This also hints that
using diverse data (DIV2K has a diverse set of sources) of
high-quality images (e.g., with few noise) may be beneficial
as well. The following experiments try to confirm this.

4.2. No­reference evaluation in the wild

WESPE does not require before/after ground truth cor-
respondences to be trained, so in this section we train it on
various datasets in the wild whose main characteristics are
shown in Table 4 as used in our experiments. Besides com-
puting no-reference scores for the results obtained in the
previous section, we complement the DPED dataset con-
taining photos from older phones with pictures taken by
phones marketed as having state-of-the-art cameras: the
iPhone 6, HTC One M9 and Huawei P9. To avoid com-
pression artifacts which may occur in online-crawled im-
ages, we did a manual collection in a peri-urban environ-
ment of thousands of pictures for each phone/camera. We
additionally consider two widely-used datasets in Computer
Vision and learning: the Cityscapes [5] and KITTI [9] pub-
lic datasets. They contain a large-scale set of urban images
of low quality, which forms a good use case for automated

Table 2: DPED dataset [13] with aligned images.

Camera source Sensor Image size Photo quality train images test images
iPhone 3GS 3MP 2048×1536 Poor 5614 113
BlackBerry Passport 13MP 4160×3120 Mediocre 5902 113
Sony Xperia Z 13MP 2592×1944 Good 4427 76
Canon 70D DSLR 20MP 3648×2432 Excellent 5902 113
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BlackBerry BlackBerry Sony Sony

Figure 4: Original (top) vs. WESPE [DIV2K] enhanced (bottom) DPED images captured by BlackBerry and Sony cameras.

Camera source Sensor Image size Photo quality train images test images
KITTI [9] N/A 1392×512 Poor 8458 124
Cityscapes [5] N/A 2048×1024 Poor 2876 143
HTC One M9 20MP 5376×3752 Good 1443 57
Huawei P9 12MP 3968×2976 Good 1386 57
iPhone 6 8MP 3264×2448 Good 4011 57
Flickr Faves Score (FFS) N/A > 1600×1200 Poor-to-Excellent 15600 400
DIV2K [1] N/A ∼ 2040×1500 Excellent 900 0

Table 4: Datasets in the wild as used in our experiments. No
aligned image pairs from different cameras are available.

quality enhancement. That is, Cityscapes contains photos
taken by a dash-camera (it lacks image details, resolution
and brightness), while KITTI photos are brighter, but only
half the resolution, disallowing sharp details (see Figure 5).
Finally, we use the recent DIV2K dataset [1] of high quality
images and diverse contents and camera sources as a target
for our WESPE training.

Importantly, here we evaluate all images with no-
reference quality metrics, that will give an absolute image
quality score, not a proximity to a reference. For objec-
tive quality measurement, we mainly focus on the Code-
book Representation for No-Reference Image Assessment
(CORNIA) [32]: it is a perceptual measure mapping to av-
erage human quality assessments for images. Additionally,
we compute typical signal processing measures, namely im-
age entropy (based on pixel level observations) and bits per
pixel (bpp) of the PNG lossless image compression. Both
image entropy and bpp are indicators of the quantity of in-
formation in an image. We train WESPE to map from one of
the datasets mentioned above to the DIV2K image dataset
as target. We also report absolute quality measures (i.e.,
bbp, entropy and CORNIA scores) on original DPED im-

ages as well as APE-enhanced, [13]-enhanced and WESPE-
enhanced ([DPED] and [DIV2K] variants) images in Ta-
ble 3, and take the best-performing methods to compare on
the remaining datasets in Table 6.

Table 3 shows that the DIV2K variant of WESPE gener-
ates the best overall image quality, surpassing [13] and the
WESPE variant that targets DPED DSLR images. This con-
firms the impression that proximity to ground truth is not the
only matter of importance. This table also shows that im-
provement is stronger for low-quality camera’s (iPhone and
Blackberry) than for the better Sony camera, which prob-
ably benefits less from the WESPE image healing. More-
over, targeting the DIV2K image quality domain seems to
improve over the DPED DSLR domain: WESPE [DIV2K]
generally improves or competes with WESPE [DPED] and
even the fully supervised [13] network.

On datasets in the wild (Table 6), WESPE and APE im-
prove the original images on all metrics on the urban im-
ages (KITTI and Cityscapes). WESPE demonstrates signif-
icantly better results on the CORNIA and bpp metrics, but
also on image entropy. Recall that KITTI and Cityscapes
consist of images of poor quality, and our method is suc-
cessful in healing such pictures. On the smartphones, whose
pictures are already of high quality, our method shows im-
proved bpp and slightly worse CORNIA scores, while keep-
ing image entropy on par. The latter findings are quite am-
biguous, since visual results for the urban (Figure 5) and
phone datasets (Figure 6) demonstrate that there is a sig-
nificant image quality difference that is not fully reflected

DPED images
Original APE [13] WESPE [DPED] WESPE [DIV2K]

entropy bpp CORNIA entropy bpp CORNIA entropy bpp CORNIA entropy bpp CORNIA entropy bpp CORNIA
iPhone 7.29 10.67 30.85 7.40 9.33 43.65 7.55 10.94 32.35 7.52 14.17 27.90 7.52 15.13 27.40

BlackBerry 7.51 12.00 11.09 7.55 10.19 23.19 7.51 11.39 20.62 7.43 12.64 23.93 7.60 12.72 9.18

Sony 7.51 11.63 32.69 7.62 11.37 34.85 7.53 10.90 30.54 7.59 12.05 34.77 7.46 12.33 34.56

Table 3: Average entropy, bit per pixel and CORNIA (lower is better) results on DPED test images. Best results are in bold.
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Cityscapes Cityscapes KITTI KITTI

Figure 5: Examples of original (top) vs. enhanced (bottom) images for the Cityscapes and KITTI datasets.

Figure 6: Original (top) vs. enhanced (bottom) images for iPhone 6, HTC One M9 and Huawei P9 cameras.

by the entropy, bpp, and CORNIA quantitative numbers
as proxy measures for perceived image quality. Moreover,
since the correlation between objective scores and human
perception can be debatable, in the following subsections
we provide a complementary subjective quality evaluation.

4.3. User study

Since the final aim is to improve both the quality and aes-
thetics of an input image, we conducted a user study com-
paring subjective evaluation of the original, APE-enhanced
and WESPE-enhanced photos with DIV2K as target, for the
5 datasets in the wild (see section 4.2 and Table 4). To as-
sess subjective quality, we chose a pairwise forced choice
method. The user’s task was to choose the preferred picture
among two displayed side by side. No additional selection
criteria were specified, and users were allowed to zoom in
and out at will without time restriction. Seven pictures were
randomly taken from the test images of each dataset (i.e.,
35 pictures total). For each image, the users were shown
a before vs. after WESPE-enhancement pair and a APE-

enhanced vs. WESPE-enhanced pair to compare. 38 people
participated in this survey and fulfilled the 35×2 selections.
The question sequence, as well as the sequence of pictures
in each pair were randomized for each user. Preference pro-
portions for each choice are shown in Table 5.

WESPE-improved images are on average preferred over
non-enhanced original images, even by a vast majority in
the case of Cityscapes and KITTI datasets. On these two,
the WESPE results are clearly preferred over the APE ones,
especially on the Cityscapes dataset. On the modern phone
cameras, users found it difficult to distinguish the quality
of the WESPE-improved and APE-improved images, espe-
cially when the originals were already of good quality, on
the HTC One M9 or Huawei P9 cameras in particular.

Setting Cityscapes KITTI HTC M9 Huawei P9 iPhone 6
WESPE vs Original 0.94±0.03 0.81±0.10 0.73±0.08 0.63±0.11 0.70±0.10
WESPE vs APE 0.96±0.03 0.65±0.16 0.53±0.09 0.44±0.12 0.62±0.15

Table 5: User study results. The fraction of times WESPE
result was preferred over original or APE-enhanced images.
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Table 6: Average entropy, bit per pixel and CORNIA scores on five test datasets. Best results are in bold.

Images
Original APE WESPE [DIV2K]

entropy bpp CORNIA entropy bpp CORNIA entropy bpp CORNIA
Cityscapes 6.73 8.44 43.42 7.30 6.74 46.73 7.56 11.59 32.53

KITTI 7.12 7.76 55.69 7.58 10.21 37.64 7.55 11.88 39.09
HTC One M9 7.51 9.52 23.31 7.64 9.64 28.46 7.69 12.99 26.35
Huawei P9 7.71 10.60 20.63 7.78 10.27 25.85 7.70 12.61 27.52
iPhone 6 7.56 11.65 24.67 7.57 9.25 35.82 7.53 13.44 28.51

Table 7: FFS scores on the DPED dataset.
fully Weakly Supervised

DPED images original
Supervised WESPE [DPED] WESPE [DIV2K]

[13] (ours) (ours)

iPhone 0.3190 0.5093 0.5341 0.6155

Blackberry 0.4765 0.5366 0.5904 0.6001

Sony 0.5694 0.6572 0.6774 0.6828

average 0.4550 0.5677 0.6006 0.6328

4.4. Flickr Faves Score

Gathering human-perceived photo quality scores is a te-
dious hence non-scalable process. To complement this, we
train a virtual rater to mimic Flickr user behavior when
adding an image to their favorites. Under the assumption
that users tend to add better rather than lower quality im-
ages to their Faves, we train a binary classifier CNN to pre-
dict favorite status of an image by an average user, which
we call the Flickr Faves Score (FFS).

First, we collect a Flickr Faves Score dataset (FFSD)
consisting of 16K photos randomly crawled from Flickr
along with their number of views and Faves. Only images of
resolution higher than 1600× 1200 pixels were considered
and then cropped and resized to HD-resolution. We define
the FFS score of an image as the number of times is was
fav’ed over the number of times it was viewed (FFS(I) =
#F(I)/#V (I)), and assume this strongly depends on over-
all image quality. We then binary-label all images as either
low –or high-quality based the median FFS: below median
is low-quality, above is high-quality. This naive methodol-
ogy worked fine for our experiments (see results below): we
leave analyzing and improving it for future work.

Next, we train a VGG19-style [26] CNN on random
224 × 224px patches to classify image Fave status and
achieve 68.75% accuracy on test images. The network
was initialized with VGG19 weights pre-trained on Ima-
geNet [24], and trained until the early stopping criterion is
met with a learning rate of 5e-5 and a batch size of 25. We
split the data into training, validation and testing subsets of
15.2K, 400 and 400 images, respectively. Note that using
HD-resolution inputs would be computationally infeasible
while downscaling would remove image details and arti-
facts important for quality assessment. We used a single
patch per image as more did not increase the performance.

We use this CNN to label both original and enhanced
images from all datasets mentioned in this paper as Fave or
not. In practice, we do this by averaging the results for five
unique crops from each image (the identical crops are used
for both original and enhanced photos). Per-dataset average
FFS scores are shown in Tables 7 and 8. Note that this la-
beling differs from pairwise preference selection as in our

Table 8: FFS scores on five test datasets in the wild.
Images Original WESPE [DIV2K]

Cityscapes 0.4075 0.4339

KITTI 0.3792 0.5415

HTC One M9 0.5194 0.6193

Huawei P9 0.5322 0.5705

iPhone 6 0.5516 0.7412

Average 0.4780 0.5813

user study of section 4.3: it’s an absolute rating of images
in the wild, as opposed to a limited pairwise comparison.

Our first observation is that the FFS scorer behaves
coherently with all observations about DPED: the three
smartphones’ original photos that were termed as ‘poor’,
‘mediocre’ and ‘average’ in [13] have according FFS scores
(Table 7, first column), and the more modern cameras have
FFS scores that are similar to the best DPED smartphone
(i.e., Sony) camera (Table 8, first column). Finally, poorer-
quality images in the Cityscapes and KITTI datasets score
significantly lower. Having validated our scalable virtual
FFS rater, one can note in Tables 7 and 8 that the FFS scores
of WESPE consistently indicate improved quality over orig-
inal images or the ones enhanced by the fully supervised
method of [13]. Furthermore, this confirms our (now recur-
rent) finding that the [DIV2K] variant of WESPE improves
over the [DPED] one.

5. Conclusion

In this work, we presented WESPE – a weakly super-
vised solution for the image quality enhancement prob-
lem. In contrast to previously proposed approaches that
required strong supervision in the form of aligned source-
target training image pairs, this method is free of this limita-
tion. That is, it is trained to map low-quality photos into the
domain of high-quality photos without requiring any corre-
spondence between them: only two separate photo collec-
tions representing these domains are needed. To solve the
problem, we proposed a transitive architecture that is based
on GANs and loss functions designed for accurate image
quality assessment. The method was validated on several
publicly available datasets with different camera types. Our
experiments reveal that WESPE demonstrates the perfor-
mance comparable or surpassing the traditional enhancers
and competes with the current state of the art supervised
methods, while relaxing the need of supervision thus avoid-
ing tedious creation of pixel-aligned datasets.
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