A Halfedge Refinement Rule
for Parallel Loop Subdivision

Supplemental Material:
GPU Performance Measurements

Kenneth Vanhoey Jonathan Dupuy
Unity Technologies Unity Technologies

This document provides exhaustive performance measurements of open source GPU-based Loop
subdivision implementations.

Methods. While there are several articles on the topic of GPU-based Loop subdivision [HFN*14,
MWS*20]], none provide open-source code. OpenSubdiv is an open-source software. It is the cur-
rent industry standard for GPU-based subdivision. We run it using its GLSL backend on Linux
and time two scenarios. For the modelling scenario, OpenSubdiv relies on tables pre-computed on
the CPU [HFN*14]. We thus monitor CPU time for this scenario. For the rendering scenario, we
time the vertex point update step using GLSL timers using a glQueryCounter(...,GL_TIMESTAMP)
routine. Our implementation handles borders and semi-sharp creases similarly to OpenSubdiv. In
contrast to OpenSubdiv, we compute both scenarios on the GPU using GLSL shaders as illustrated
in our accompanying code. We also time it on Linux using a glQueryCounter(...,GL_TIMESTAMP)
routine.

Data. We consider a total of 8 meshes with different properties (see sections[1|to[8). The first three
meshes have no boundaries nor semi-sharp creases. The following two have borders. The final three
have borders and semi-sharp creases. Input mesh face counts vary from 634 faces (Knight, Sec.3) to
33,912 faces (ArmorGuyT, Sec. . We use a 'T’ suffix for the name of the input mesh whenever we
need to pre-triangulate it. We provide all input OB]J files with our source code.

Protocol. We performed GPU runtime measurements on both OpenSubdiv and our method for
each mesh down to seven subdivision levels. For each subdivision, we provide three plots. The
first plot provides measurements for end-to-end subdivision, which is relevant for scenarios where
the topology of the input mesh is dynamic, e.g., interactive modelling. The second plot provides
measurements for vertex point subdivision, which is relevant for scenarios where the topology of
the input mesh is static, e.g., interactive rendering of skinned meshes. Finally, the third plot pro-
vides measurements for each GPU kernel we implemented. Each plot reports the median runtime
measured over 50 evaluations and the minimum and maximum runtime as error bars. All timings
include shader/kernel execution time, necessary memset instructions, state changes, and CPU-GPU
synchronizations. All measurements were done on an NVIDIA Titan Xp graphics card and a 3.50GHz
Intel Core i5-4690K CPU with 24GiB RAM.

Discussion. Our measurements show that our method is roughly as fast as OpenSubdiv in the
Vertex Points Subdivision scenario, although exhibits less variance. For the End-to-End Subdivision
scenario however, our method significantly outperforms OpenSubdiv. This is because OpenSubdiv
relies on sequential CPU pre-computations in this case, while we perform all computations on the
GPU.

OpenSubdiv performance measurements are left missing whenever we get an out-of-memory
error on our platform. This shows that it runs out of memory for subdivision depths that our method
handles well, hence has a less favorable memory complexity than we do.

Finally, we explained above that we only compare to available open-source implementations.
This excludes the method of Mlakar et al. [MWS*20] as there is no open source implementation
available for Loop subdivision. However, their method has been compared against parallel half-
edge refinement for Catmull-Clark subdivision [DV21]]. This showed that both methods’ timings
are of the same order of magnitude, with their method slightly outperforming that of Dupuy and
Vanhoey. We believe that we can reasonably expect this to be similar for Loop subdivision too, since
the complexities involved are similar.

References

[DV21] Jonathan Dupuy and Kenneth Vanhoey. A Halfedge Refinement Rule for Parallel
Catmull-Clark Subdivision. Computer Graph. Forum, 40(8), 2021.

[HEN*14] Yun-Cen Huang, Jieqing Feng, Matthias Niefiner, Yuanmin Cui, and Baoguang Yang.
Feature-adaptive rendering of loop subdivision surfaces on modern gpus. 7. Comput.
Sci. Technol., 29(6):1014-1025, 2014.

[MWS*20] D. Mlakar, M. Winter, P. Stadlbauer, H.-P. Seidel, M. Steinberger, and R. Zayer.
g y
Subdivision-specialized linear algebra kernels for static and dynamic mesh connectivity
on the gpu. Computer Graph. Forum, 39(2), 2020.

1 Bigguy

BigguyT

0 boundaries
(0 creases)
H,=8,700 Hy=2,227,200
Fy =2,900 Fy = 742,400
Ey = 4,340 E4 =1,113,600
Vo =1,452 Vy = 371,202

timings (ms)

timings (ms)

timings (ms)

End-to-End Subdivision

106 — | | | | | _
[0 openSubdiv [l Ours =
10* |-] 2
YT — u —
10° |- 2
1072 [l\ l‘ -
depth: 1 2 3 4 5 6 7
Vertex Point Subdivision
102 — | | | | | -
[l OpenSubdiv [![10urs —— %
10! | I; i
10° = E
107! B =
1072 £ -
f f f
depth: 1 2 3 4 5 6 7
Our Kernel Timings
102 F ! ! ! ! ! _
DHalfedges [Creases [l ClearBuffer || VertexPoints 1
10" £ g E
= gEES ‘ gy
100 = z = =
I T 3 3 2 2 I
" s 28 AN
10_1 E 2 2 e 2 =
1072 | =

(8,1}

o)}

|

2 Monsterfrog

MonsterfrogT

0 boundaries
0 creases
Hy=7,752 Hy=1,984,512
Fy =2,584 Fy = 661,504
Eo =3,876 E,= 992,256
Vo =1,308 Vi = 330,768

timings (ms)

timings (ms)

timings (ms)

End-to-End Subdivision
| | |

10°

102 -

100 -

10—2 -

[0 openSubdiv [l Ours

bl

depth: 1 2 3

4 5

Vertex Point Subdivision

_ !
[0 openSubdiv [l Ours

101

1072

depth: 1 2 3

4 5

Our Kernel Timings

|
0 Halfedges [iCreases [’ ClearBuffer || VertexPoints

101

10°

1072

1073

depth: ‘1

[*)}

~

3 Knight

Knight

S4

—_~

%)

g

%)

jeTy]

[=]

=

: £

0 boundaries +

0 creases

Hy=1,902 H, = 486,912
Fy = 634 Fy = 162,304
Eo= 951 E, =243,456
Vo = 365 V, = 81,200

—_~

[2)

g

[2)

Vo]

[=]

-

£

=

—_~

[2)

g

[%)

Vo]

=]

.-

£

=

10°
10*
103
102
10!
10°
1071

1072

End-to-End Subdivision
| | |

[0 openSubdiv Il Ours

==

depth: 1 2 3 4 5

101

10°

1071

1072

Vertex Point Subdivision
| | | |

|
[0 openSubdiv [l Ours

depth: 1 2 3 4 5

101

10°

Our Kernel Timings

|
0 Halfedges [iCreases [’ ClearBuffer || VertexPoints

[*)}

~

4 T-Rex

T-rexT

594 boundaries
(0 creases)
Hy=67,140 H,=17,187,840
Fy =22,380 F4 = 5,729,280
Ey =33,867 E4;= 8,598,672
Vo =11,539 V4 = 2,869,444

timings (ms)

timings (ms)

timings (ms)

10°
10*
103
102
10
10°

1071

End-to-End Subdivision

[0 openSubdiv [l Ours

]

depth: 1 2 3 4

10°

10?

101

10°

1071

depth: 1

103

102

5

Vertex Point Subdivision

[0 OpenSubdiv !10urs

1

\
2 3 4

5

Our Kernel Timings

|
DHalfedges i Creases

ClearBuffer

VertexPoints

R N NN

w

(o)

5 imrod

ImrodT End-to-End Subdivision

[0 openSubdiv Il Ours

10°

timings (ms)
—
b

1
223 boundaries 10
0 creases

Hy=26,985 Hy=6,908,160 10°
Fo = 8995 Fj =2,302,720
Eo=13,604 E, =3,455,864 101
Vo= 4630 Vj=1,153,165

TTTT T T IO T T T T T T T T T T TR

=1

depth: 1 2 3 4 5

Vertex Point Subdivision
| | | | |

[0 openSubdiv [l Ours

10?

101

T TTTTTT
-
|
]

10°

timings (ms)

N m m
1072 k& \ \
depth: 1 2 3 4 5

Our Kernel Timings

|
102 DHalfedges [l Creases ||ClearBuffer || VertexPoints

101

timings (ms)
T \HHH‘ T \HHH‘
)

8,

(o)}
~

6 Car

CarT

60 boundaries
314 creases

Hy =9,450 H, = 2,419,200
Fy =3,150 Fy = 806,400
Ey =4,755 E4 = 1,210,080
Vo =1,642 Vy= 403,717

timings (ms)

timings (ms)

timings (ms)

End-to-End Subdivision

106

[0 openSubdiv 1 Ours

104 -

102 -

—_

(=)
=]
T

1()—2 -

1]

depth: 1 2 3 4

Vertex Point Subdivision

5

102 —

[0 OpensSubdiv [!10urs

101

10°

1071

1072

depth: 1 2 3 4

5

Our Kernel Timings

102 =

|
DHalfedges il Creases

ClearBuffer ElVertexPoints

101

10°

1071

—_

<
w
]

NN

NNNNNNNNNY

(o)

|

24 boundaries
280 creases
H, = 4,530 Hy=1,159, 680
Fy =1,510 Fy = 386,560
Eo =2,277 E, = 580,032
Vo = 768 Vi = 193,473

timings (ms)

timings (ms)

timings (ms)

—_
(=]
'S

—_
S
)

10°

1072

End-to-End Subdivision

[0 openSubdiv Il Ours -

|

depth: 1 2 3 4 5 6 7

101

10°

1071

1072

T
depth: 1 2 3 4 5 6 7

101

10°

1071

1072

10—3 - Z;Z‘ :
depth: 1

Vertex Point Subdivision
| | | | |

[0 openSubdiv [l Ours -

Our Kernel Timings

|
[Halfedges [iCreases [’ ClearBuffer || VertexPoints

(@)}
N

8 ArmorGuy

ArmorguyT

2034 boundaries

(7101 creases)
Hy=101,736 H,=26,044,416
Fy = 33,912 F, = 8,681,472
Eo = 51,885 E, =13,038,480
Vo = 18,423 V, = 4,357,458

End-to-End Subdivision

|
5 m —
10 [0 OpenSubdiv [!0Ours E
10* £ - -
a 3 L = N
[} = E|
z w0y
%2} -] — —
g 10 E
£ ; 1
10° = j 4
10—1 L ll |
depth: 1 2 3 4 5 6
Vertex Point Subdivision
| | | |
10? {{[/0 OpenSubdiv 1 Ours =
i = 7
—~ 10" | .
172} - .
E = :
” - i
ED B .
g 10°F -
1071 R
f f
depth: 1 2 3 4 5 6
Our Kernel Timings
| | | | |
102 DHalfedges [Creases [ClearBuffer | |VertexPoints — -
_ 10E =
[2) - ’F .
g ’ - O
& 107 i z =
=) = 2 BHE=
5 - =t 2 Him-
107 =
107 1 =
- ‘ .;,‘ AN o B
depth: 1 2 5 6

10

	Bigguy
	Monsterfrog
	Knight
	T-Rex
	imrod
	Car
	Rook
	ArmorGuy

