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This document provides exhaustive performance measurements of open source GPU-based Loop
subdivision implementations.

Methods. While there are several articles on the topic of GPU-based Loop subdivision [HFN*14,
MWS*20]], none provide open-source code. OpenSubdiv is an open-source software. It is the cur-
rent industry standard for GPU-based subdivision. We run it using its GLSL backend on Linux
and time two scenarios. For the modelling scenario, OpenSubdiv relies on tables pre-computed on
the CPU [HFN*14]. We thus monitor CPU time for this scenario. For the rendering scenario, we
time the vertex point update step using GLSL timers using a glQueryCounter(...,GL_TIMESTAMP)
routine. Our implementation handles borders and semi-sharp creases similarly to OpenSubdiv. In
contrast to OpenSubdiv, we compute both scenarios on the GPU using GLSL shaders as illustrated
in our accompanying code. We also time it on Linux using a glQueryCounter(...,GL_TIMESTAMP)
routine.

Data. We consider a total of 8 meshes with different properties (see sections[1|to[8). The first three
meshes have no boundaries nor semi-sharp creases. The following two have borders. The final three
have borders and semi-sharp creases. Input mesh face counts vary from 634 faces (Knight, Sec.3) to
33,912 faces (ArmorGuyT, Sec. . We use a 'T’ suffix for the name of the input mesh whenever we
need to pre-triangulate it. We provide all input OB]J files with our source code.

Protocol. We performed GPU runtime measurements on both OpenSubdiv and our method for
each mesh down to seven subdivision levels. For each subdivision, we provide three plots. The
first plot provides measurements for end-to-end subdivision, which is relevant for scenarios where
the topology of the input mesh is dynamic, e.g., interactive modelling. The second plot provides
measurements for vertex point subdivision, which is relevant for scenarios where the topology of
the input mesh is static, e.g., interactive rendering of skinned meshes. Finally, the third plot pro-
vides measurements for each GPU kernel we implemented. Each plot reports the median runtime
measured over 50 evaluations and the minimum and maximum runtime as error bars. All timings
include shader/kernel execution time, necessary memset instructions, state changes, and CPU-GPU
synchronizations. All measurements were done on an NVIDIA Titan Xp graphics card and a 3.50GHz
Intel Core i5-4690K CPU with 24GiB RAM.



Discussion. Our measurements show that our method is roughly as fast as OpenSubdiv in the
Vertex Points Subdivision scenario, although exhibits less variance. For the End-to-End Subdivision
scenario however, our method significantly outperforms OpenSubdiv. This is because OpenSubdiv
relies on sequential CPU pre-computations in this case, while we perform all computations on the
GPU.

OpenSubdiv performance measurements are left missing whenever we get an out-of-memory
error on our platform. This shows that it runs out of memory for subdivision depths that our method
handles well, hence has a less favorable memory complexity than we do.

Finally, we explained above that we only compare to available open-source implementations.
This excludes the method of Mlakar et al. [MWS*20] as there is no open source implementation
available for Loop subdivision. However, their method has been compared against parallel half-
edge refinement for Catmull-Clark subdivision [DV21]]. This showed that both methods’ timings
are of the same order of magnitude, with their method slightly outperforming that of Dupuy and
Vanhoey. We believe that we can reasonably expect this to be similar for Loop subdivision too, since
the complexities involved are similar.
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