Robust Fitting on Poorly Sampled Data for Surface Light Field Rendering and Image Relighting

Published in next issue of Computer Graphics Forum

Kenneth VANHOEY KVanhoey@unistra.fr Basile SAUVAGE Sauvage@unistra.fr Olivier Génevaux

Genevaux@unistra.fr

Frédéric LARUE FLarue@unistra.fr Jean-Michel DISCHLER Dischler@unistra.fr

크

GT Rendu, March 8th 2013 Telecom ParisTech, Paris

IGG team, ICube laboratory Université de Strasbourg / CNRS

OUTLINE

- **1** INTRODUCTION
- **2** Robust Reconstruction Method
- **3** Statistical Robustness Analysis
- 4 Results and conclusion

(P2/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLER ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

イロト イポト イヨト イヨト

3

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

Part 1 / 4

INTRODUCTION

(P3/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLER ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

CONTEXT : 3D DATA ACQUISITION ACQUISITION AND RECONSTRUCTION PROCESS CHALLENGES AND FRAMEWORK

イロト イロト イヨト イヨト

3D DATA ACQUISITION WITH ASPECT

DEFINITION

Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples : geometry

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

ヘロン ヘロン ヘルン ヘルン

3D DATA ACQUISITION WITH ASPECT

DEFINITION

Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

Examples : DIFFUSE COLOR

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

3D DATA ACQUISITION WITH ASPECT

DEFINITION

Recreate a 3D model of a real object through physical acquisition

- Shape (surface)
- Aspect (surface color)

EXAMPLES : DIFFUSE COLOR VS. DIRECTIONAL COLORS

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

APPLICATIONS

(P5/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLER ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

ACQUISITION AND RECONSTRUCTION PROCESS

Physical acquisition

Algorithms

- Picture projection on mesh
- 2 Aspect as a light field

(P6/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLER ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

ACQUISITION AND RECONSTRUCTION PROCESS

Physical acquisition

Algorithms

- Picture projection on mesh
- 2 Aspect as a light field

(P6/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLER ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

Physical constraints

- Light-weight, transportable devices : mobile scanner and hand-held camera
- Constrained space : fixed objects, obstacles, ...

GLOBAL INPUT

- incomplete coverage
- unstructured coverage

(P7/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLER ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

Context : 3D data acquisition Acquisition and reconstruction process Challenges and framework

Physical constraints

- Light-weight, transportable devices : mobile scanner and hand-held camera
- Constrained space : fixed objects, obstacles, ...

GLOBAL INPUT

- incomplete coverage
- unstructured coverage

(P7/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLER ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

INPUT : K COLOR SAMPLES

 $\{(\omega_i, v_i)\}$

 ω_i is a local observation direction; v_i is a color.

RECONSTRUCTION ALGORITHM

 $f(\omega_i) \approx v_i$

OUTPUT : LIGHT FIELD FUNCTION

$$f(\omega) = \Sigma c_j \phi_j(\omega)$$

where the coefficients c_i are to be estimated.

(日) (圖) (E) (E) (E)

Context : 3D data acquisition Acquisition and reconstruction process Challenges and Framework

CONTRIBUTIONS

1. Simple robust reconstruction method

2. Analysis / comparison tool

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

Examples Stabilization through energy minimization Stabilization energy choice

◆ロト ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● 今 Q @ ●

Part 2 / 4

ROBUST RECONSTRUCTION METHOD

(P10/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

EXAMPLES

STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

EXAMPLES

(P11/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR.

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

LEAST SQUARES ON SQUARE ERROR

 $ArgMin_C(E_{MSE})$

where $E_{MSE} = \sum_{i} ||f(\omega_i) - v_i||^2$

FITTING

Which solution to choose?

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

CONSEQUENCES

- Several solutions
- Unexpected solutions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Unstable result

(P12/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

LEAST SQUARES ON SQUARE ERROR

$$ArgMin_{C}(E_{MSE})$$

here $E_{MSE} = \sum_{i} \|f(\omega_{i}) - v_{i}\|^{2}$

FITTING

w

Problems

- Under-constriction
- Non-covered parts
 - Perturbations (noise)

CONSEQUENCES

- Several solutions
- Unexpected solutions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

Unstable result

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

LEAST SQUARES ON SQUARE ERROR

$$\label{eq:argMin} \begin{split} & \textit{ArgMin}_{C}(\textit{E}_{\textit{MSE}}) \end{split}$$
 where $\textit{E}_{\textit{MSE}} = \sum_{i} \|f(\omega_{i}) - \textit{v}_{i}\|^{2}$

FITTING

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

Consequences

- Several solutions
- Unexpected solutions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Unstable result

(P12/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

LEAST SQUARES ON SQUARE ERROR

 $ArgMin_{C}(E_{MSE})$ where $E_{MSE} = \sum_{i} ||f(\omega_{i}) - v_{i}||^{2}$

Generic and simple method for :

- well constrained
- penalizing unexpected colors
- increasing stability w.r.t. perturbations

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

CONSEQUENCES

- Several solutions
- Unexpected solutions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Unstable result

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

MINIMIZATION OF WEIGHTED ENERGIES

$$ArgMin_{C}((1 - \lambda)E_{MSE} + \lambda E_{stab})$$

where $E_{MSE} = \sum_{i} ||f(\omega_i) - v_i||^2$

GENERIC AND SIMPLE METHOD FOR :

- well constrained
- penalizing unexpected colors
- increasing stability w.r.t. perturbations

Problems

- Under-constriction
- Non-covered parts
- Perturbations (noise)

CONSEQUENCES

- Several solutions
- Unexpected solutions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

Unstable result

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

$$E_{stab} = E_0$$

MINIMIZATION OF WEIGHTED ENERGIES

$$ArgMin_{C}((1 - \lambda)E_{MSE} + \lambda E_{stab})$$

E_0 : FUNCTION ENERGY

$$E_{stab} = E_0 = \iint_{\Omega} \|f\|^2$$

Defined in [LLW06] for :

- reducing compression noise
- Spherical Harmonics

Does not suit our purpose

Pulls function values towards 0.

Q (*

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

MINIMIZATION OF WEIGHTED ENERGIES

$$ArgMin_C((1 - \lambda)E_{MSE} + \lambda E_{stab})$$

E_2 : THIN-PLATE ENERGY

$$E_{stab} = E_2 = \iint_{\Omega} (\Delta f)^2$$

Defined in [WAA+00] for :

- local under-constriction problem
- Lumispheres

Efficient, but ...

- Generates expected colors in most cases
- Does not penalize extrapolations

 $E_{stab} = E_2$

EXAMPLES STABILIZATION THROUGH ENERGY MINIMIZATION STABILIZATION ENERGY CHOICE

MINIMIZATION OF WEIGHTED ENERGIES

$$ArgMin_{C}((1 - \lambda)E_{MSE} + \lambda E_{stab})$$

E_1 : GRADIENT ENERGY

$$E_{stab} = E_1 = \iint_{\Omega} \|\nabla f\|^2$$

Defined for :

 Limit high frequency variations and extrapolations

Efficient, and ...

- Generates expected colors
- Disallows extrapolations
- Tends towards constant value

$E_{stab} = E_1$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

EVALUATION PRECISION/STABILITY TRADE-OFF COMPUTATION & INTERPRETATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

Part 3 / 4

STATISTICAL ROBUSTNESS ANALYSIS

(P16/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

EVALUATION PRECISION/STABILITY TRADE-OFF COMPUTATION & INTERPRETATIO

PRECISION MEASURE

Visual

 $E_{MSE} = \sum_i \|f(\omega_i) - v_i\|^2$

STABILITY MEASURE

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g. :

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● ● ● ● ●

EVALUATION PRECISION/STABILITY TRADE-OFF COMPUTATION & INTERPRETATION

PRECISION MEASURE

Visual

•
$$E_{MSE} = \sum_i \|f(\omega_i) - v_i\|^2$$

STABILITY MEASURE

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g. :

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の�?

EVALUATION PRECISION/STABILITY TRADE-OFI COMPUTATION & INTERPRETATIO

PRECISION MEASURE

- Visual
- $\bullet E_{MSE} = \sum_i \|f(\omega_i) v_i\|$

STABILITY MEASURE

A stable fitting algorithm is one that is not sensitive to difficult conditions, e.g. :

- poor sampling conditions (bad coverage, sparsity)
- perturbations (input data noise, missing observation directions)

(日) (圖) (E) (E) (E)

EVALUATION PRECISION/STABILITY TRADE-OFF COMPUTATION & INTERPRETATION

MEASURES

- Precision error (bias)
- Stability error (variance)
- Expected prediction error \hat{E}

(P18/26)

VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE

ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

EVALUATION PRECISION/STABILITY TRADE-OFF COMPUTATION & INTERPRETATION

Computation & Interpretation

TOOL

- Analyzing stabilization behavior w.r.t. input data, function basis, basis size, ...
- Derive optimal λ
- Compare energies

ESTIMATE \hat{E}

Specific conditions [HTF01]

 No statistical model of input data (noise)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

 Scarcity (finite data set to run statistical process on)

Bootstrap method

Results Conclusion & future work

Part 4 / 4

RESULTS AND CONCLUSION

(P20/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

Results Conclusion & future work

NEED FOR STABILIZATION

(P21/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

RESULTS CONCLUSION & FUTURE WORK

ENERGY COMPARISON

COMPARISON RESULTS

All energies generate stable fittings.

- E₀ generates unwanted colors
- *E*₁ generates expected colors
- E₂ generates expected colors in some conditions

Robustness of E_1

- Function basis
- Color space
- Sparsity
- Basis size

RESULTS CONCLUSION & FUTURE WORK

ENERGY COMPARISON

Comparison results

All energies generate stable fittings.

- E₀ generates unwanted colors
- *E*₁ generates expected colors
- E₂ generates expected colors in some conditions

Robustness of E_1

- Function basis
- Color space
- Sparsity
- Basis size

RESULTS CONCLUSION & FUTURE WORK

イロト イポト イヨト イヨト

λ choice

(P23/26) VANHOEY, SAUVAGE, GÉNEVAUX, LARUE, DISCHLE ROBUST FITTING ON POORLY SAMPLED DATA FOR IBR

RESULTS CONCLUSION & FUTURE WORK

GENERIC METHOD

Works for any type of hemispherical functions.

Results Conclusion & future work

(日) (周) (王) (王)

3

CONCLUSION

Robust reconstruction method for surface light fields and image-based relighting applications

- difficult conditions (sparsity, distribution, noise, basis type and size)
- compromise between precision and stability

Statistical tool

- derive an optimal precision/stability compromise
- assess results

FUTURE WORK

Reliable data for post-processing

- simplification
- level-of-detail visualization
- interpolation (for mip-mapping)

Issue

holes : how to fill them ?

Results Conclusion & future work

Thank you for your attention!

Questions ?

PAPER AVAILABLE

(P26/

- soon in Computer Graphics Forum
- now at http ://dpt-info.u-strasbg.fr/~kvanhoey

	Trevor Hastie, Robert Tibshirani, and Jerome Friedman.
	The Elements of Statistical Learning.
	Springer Series in Statistics. Springer New York Inc., New York, USA, 2001.
	Ping-Man Lam, Chi-Sing Leung, and Tien-Tsin Wong.
	Noise-resistant fitting for spherical harmonics.
	IEEE Transactions on Visualization and Computer Graphics, 12:254–265, March 2006.
	Daniel N. Wood, Daniel I. Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H. Salesin, and Werner Stuetzle
	Surface light fields for 3d photography.
	In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, SIGGRAPH '00, pages 287–296, New York, NY, USA, 2000. ACM Press/Addison-Wesley Publishing Co.
	· 니 가 (DF가 (문가 (문가 (문가) 문
(a)	JANHOEV SALWACE CENEVALY LADLE DISCHLE RODUST FITTING ON POOPLY SAMPLED DATA FOR IR!