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Abstract
2D parametric color functions are widely used in Image-Based Renderingand Image Relighting. They make it
possible to express the color of a point depending on a continuous directional parameter: the viewing or the inci-
dent light direction. Producing such functions from acquired data is promising but dif�cult. Indeed, an intensive
acquisition process resulting in dense and uniform sampling is not always possible. Conversely, a simpler acquisi-
tion process results in sparse, scattered and noisy data on which parametric functions can hardly be �tted without
introducing artifacts.
Within this context, we present two contributions. The �rst one is a robust least-squares based method for �tting
2D parametric color functions on sparse and scattered data. Our method works for any amount and distribution
of acquired data, as well as for any function expressed as a linear combination of basis functions. We tested our
�tting for both image-based rendering (surface light �elds) and image relighting using polynomials and spherical
harmonics. The second one is a statistical analysis to measure the robustness of any �tting method. This measure
assesses a trade-off between precision of the �tting and stability w.r.t. input sampling conditions. This analysis
along with visual results con�rm that our �tting method is robust and reduces reconstruction artifacts for poorly
sampled data while preserving the precision for a dense and uniform sampling.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Digitizing and scanning I.4.1 [Computer Graphics]: Digitization and Image Capture—Re�ectance

1. Introduction

Acquiring real-world data using geometric scans and/or pho-
tographs has received a lot of attention over the last two
decades. Setups and algorithms have made it possible to
recreate a subset of the plenoptic function [MB95] based
on geometric information and/or images [SKC03, ZC04,
Deb05]. Sophisticated acquisition techniques [DvGNK99,
DHT� 00,MGW01] based on domes of light sources and/or
cameras allow the acquisition of both geometry and pho-
tometry with unprecedented detail and accuracy. Model-
ing acquired data by ef�cient representations (surface light
�elds [MRP98, WAA � 00, CBCG02], Polynomial Texture
Maps [MGW01], etc.) enables straightforward visualization
and compression.

When an intensive acquisition campaign can be per-
formed in controlled conditions, good results are obtained.
It generally requires to move the object or the devices freely,
which is not always feasible, especially for large scale ob-
jects. In many cases, a light and versatile acquisition pro-

cess may be the only solution. Moreover, the image-based
modeling and rendering community recently aims at simpli-
fying acquisition. Such a process, namely one that is based
on portable devicesand that considersnon-controlledenvi-
ronments, results in scattered input samples that tend to be
sparse and noisy.

Our purpose is twofold. We want to enable artifact-less vi-
sualization on highly detailed models with free walk-through
of the scene, even when considering poorly sampled data.
Moreover, we want to contribute to the simpli�cation of ac-
quisition processes looked for by the community. Whereas
previous methods assume dense and/or uniformly distributed
data, we conversely consider the case of sparse and non-
uniform sampling. In this context, we investigate the �tting
of 2D parametric functions.
Our �rst contribution is a simple robust constrained least-
squares (CLS) �tting method able to �t functions on ex-
tremely sparse data (section4). These functions are ex-
pressed as a linear combination of basis functions and can
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in particular represent surface light �elds (SLF). To do so,
we add a stabilization energy to the unconstrained least-
squares (ULS) �tting process that prevents visual artifacts
and makes the �tting robust to input sampling conditions.
We demonstrate that better �tting quality is achieved for
poorly sampled data obtained from simple and lightweight
acquisition devices.
Stability problems mainly arise in poor sampling conditions.
They are due to input noise which is a consequence of accu-
racy limits of acquisition devices and of reconstruction al-
gorithms. The most frequently used visual examination is
not suf�cient to assess these problems. Therefore our sec-
ond contribution is a statistical bias-variance analysis that is
carried out by a bootstrap method (section5). This tool al-
lows for (i) measuring the stability with respect to input sam-
pling conditions, (ii) balancing between precision and stabil-
ity, and (iii) comparing �tting methods and function bases.
It is easy to implement and provides a quantitative analysis
for any �tting method.

The paper is organized as follows. Section2 presents re-
lated work. In section3 we state the formulation of the prob-
lem. Our new �tting method is then described in section4.
Section5 describes a statistical analysis for assessing the ro-
bustness of any �tting method. We discuss results in sec-
tion 6 and conclude in section7.

2. Related work

2.1. Image-based modeling and rendering

The �eld of image-based modeling and rendering aims at re-
constructing a continuous approximation of a scene based
on a set of photographs. That is, it seeks to produce a virtual
scene allowing free walk-through. A photograph is a set of
pixels de�ning an instantaneous representation of the wave-
length (color) (1D), observed from a speci�c location (3D)
with a speci�c viewing direction (2D) at a given time (1D). It
is therefore a sampling of the 7D plenoptic function [MB95].
As shown in [ZC04], successive simpli�cations enable to re-
duce the plenoptic approximation problem to the reconstruc-
tion of a 4D signal. This signal is called a light �eld and de-
pends on two dimensions related to location and two others
to the viewing direction.

Light �eld rendering [LH96] and lumigraph [GGSC96]
were the �rst ef�cient representations of this 4D space. Vi-
sualization is real-time but the acquisition process, solely
based on photographs, remains tedious and dense sam-
pling is required for good results. Light �elds taking ad-
vantage of the geometrical information (meshes) were de-
signed to enable image re-projection on it, thus improv-
ing accuracy and reducing memory consumption while ex-
ploiting modern graphics hardware in a better way. View-
dependent texture mapping [DTM96, DYB98] updates tex-
tures based on photographs to project them onto very coarse
geometry, for instance for approximating city-like scenes.

It assumes sparse data, but is not designed to handle de-
tailed geometry. When �ne geometrical detail is favored,
surface light �elds (SLF) offer a better solution. There are
two approaches for representing them: global factorization
methods [MRP98, NSI01, CHLG05] that process the light
�eld as a combination of eigen-textures, and local meth-
ods [WAA � 00, CBCG02, CL06] that express the color by
de�ning a 2D function on the visible hemisphere indepen-
dently at each surface point (usually vertices or texels).

Image relighting techniques handle a scene viewed from
a �xed point of view, the resulting image being de�ned as
a function of the lighting conditions. Conversely to SLF,
the geometry is ignored in this case, discarding sampling
problems induced by self-occlusion. However, to completely
avoid reconstruction artifacts, highly controllable acquisi-
tion conditions are required. For image relighting too, both
global interpolation/factorization and local representations
coexist. Global methods are useful for de�ning an image
as a function of general lighting conditions (an environ-
ment map for instance). Light transfer matrices form a re-
cent and powerful tool but are exploitable and precise only
when the lighting environment can be modi�ed at will dur-
ing acquisition [WDT� 09, PML� 09, OK10]. Local repre-
sentations on the other hand represent each pixel color as
a function of the direction of a unique point light source,
parametrized on a hemisphere. Here again, it is required to
use video footage for dense acquisition [MDA02] or rigid
devices [DHT� 00, HED05, FLBS07, FBLS07] able to con-
trol light sources uniformly arranged around the object.

During an on-site acquisition campaign, lighting condi-
tions and/or viewpoint sampling may not be controllable. In
this paper we therefore address the problem of robustness in
�tting 2D parametric functions on input data for SLF render-
ing and image relighting.

2.2. Fitting 2D parametric functions

A light �eld can be de�ned as a color for every surface
point (2D) and for every viewing/lighting direction (2D) and
can therefore be expressed by de�ning a 2D hemispherical
function per point. The �tting process consists in estimating
the parameters of such a function in order to �t the input
samples. Input samples are a set of colors located on the vis-
ible hemisphere. This location is deduced from projection of
photographs onto the surface (SLF) or from the light source
position (for image relighting).

Non-linear functions (for example [LFTG97]) are precise
but require dense sampling [WDR11] and are rather used for
higher-dimensioned (4D) hemispherical functions. In 2D,
linear combinations of basis functions are often used owing
to their simplicity. They enable to express the �tting problem
as a set of linear equations. Therefore, the �tting and eval-
uation are simple and ef�cient. The most commonly used
are spherical harmonics [Mac48], polynomials [MGW01],
spherical wavelets [SS95] and lumispheres [WAA � 00].
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We solve the problem of �tting hemispherical func-
tions to sample data by constrained least-squares. Woods
et al. [WAA � 00] used this approach to solve the under-
constriction problem resulting from occlusions. Lam et
al. [LLW06] constrain a �tting such that the post-processing
compression noise is minimized. By contrast we study the
impact of the input sampling on the �tting process.

2.3. Statistical analysis

In the �eld of statistical learning, �tting is known asregres-
sion. Our representation for the �tted functions corresponds
to alinear basis expansion. The stabilization is called areg-
ularization method. It is however a sensitive method that
requires tuning. In this context, bias-variance analysis is a
powerful assessment tool [HTF01]. For our purpose it en-
ables both to compare �tting methods and to balance be-
tween precision and stability.

This analysis mainly evaluates theexpected prediction er-
ror which measures the method's capability in successfully
�tting on new data sets. It may be implemented in many
ways. Since the SLFs can be arbitrarily complicated and
since several perturbations are mixed during data acquisition
and processing, we are not able to de�ne a precise statisti-
cal model of the data. Thus implementations requiring much
a priori knowledge are dif�cult to apply: general methods
(e.g. cross-validation or bootstrap) better suit our purpose.
Another obstacle is the scarcity of the data. The analysis is
made easier if a large data set is available for each hemi-
sphere. However, dense acquisition of real world data is te-
dious, and we aim at validating the �tting in sparse sam-
pling conditions. Therefore we implemented this analysis
via bootstrap [HTF01] which is more stable in this setting.

3. De�nitions

For the sake of clarity we will consider in the following only
SLF. However, the proposed methods and results hold for
image relighting techniques, as illustrated in section6. SLF
is also the most dif�cult case: since it is de�ned on the ge-
ometry, auto-occlusions occur and a complex reconstruction
pipeline worsens data sampling quality. Our purpose is then
to represent the color of a 3D model for any viewing direc-
tion. So we consider the �tting of scalar-valued functions
over the visible hemisphere (one per color channel) for each
spatial location on a surface. We note that all results still hold
for functions de�ned over the entire sphere.

3.1. Least-Squares Fitting

A function f (w) de�ned over the hemisphereW is repre-
sented as a linear combination ofK basis functions by

f (w) =
K

å
i= 1

ci j i(w) = CTF (w) (1)

where C = [ c1; : : : ;cK ]T is the vector of coef�cients,
andF (w) = [ j 1(w); : : : ; j K(w)]T is the vector of basis func-
tions.

As an input, we are given a set ofN sam-
plesf (w1;v1); : : : ; (wN;vN)g de�ned by a directionwn 2 W
and a color coordinatevn.

The problem of �tting f onto the samples is commonly
solved by least-squares,i.e. by minimizing the mean square
error (MSE):

EMSE =
1
N
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For dense sampling (N � K) the problem is in general well-
constrained and the minimization is stable. Sparse sampling
may result in under-constriction and instability. Both draw-
backs are often overcome by minimizing a weighted combi-
nation ofEMSE and a stabilization energyEstab:

argmin
C

(1� l )EMSE+ l Estab (3)

3.2. Scattered data classi�cation

We consider two different properties of the sampling distri-
bution that impact on the stability of the �tting step:

Sparsity. Due to complex geometry and the inability to take
large amounts of photographs, many surface points are
visible from only a few images. Therefore, handling a
few samples (N) compared to the number of basis func-
tions (K) is a key problem for �tting. We call the data
very sparsewhenN � K. Sparsedata refers toN � K.
Densedata refers toN � K.

Uniformity. Large parts of the hemisphere may contain no
samples. This can be due to unreachable viewing direc-
tions (e.g.top views of large objects) or to self-occlusion.
We call a distribution uniform when samples are spread
over the entire hemisphere. A distribution is non-uniform
when there are no samples in signi�cant parts of it. More
than half of the hemisphere may be concerned.

The more sparse and non-uniform the sampling, the more
dif�cult the stabilization.

4. Robust Fitting Method

Stability issues are mainly caused by sparsity and are mag-
ni�ed in non-covered areas. For example with a low amount
of color-noise in �gure1a(input samples contain only white
and magenta), Unconstrained Least Squares (ULS) �tting in-
troduces high frequencies that make unwanted colors appear
(�g. 1b).

In the setting of eq. (3), the challenge consists in choos-
ing Estab and l . Though many choices would numerically
overcome the under-constriction, analyzing the causes of the
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(a) Noisy
input samples

(b) No
stabilization
l = 0

(c) Slight
stabilization
l = 0:1

(d) Strong
stabilization
l = 0:99

Figure 1: Hemispherical functions are �tted to input sam-
ples (1a) containing 1% color noise. Without any stabiliza-
tion (1b) the �tted functions show huge color variations. A
slight stabilization (1c) prevents variations. With a strong
stabilization (1d) the �tted functions are over-smoothed.

instability and the results we expect is essential for making
a wise choice.

We tested two different energies that have been used for
Constrained Least Squares (CLS) �tting in related works.
By analyzing their drawbacks, we propose a new energy
that aims at improving the robustness of the �tting. We la-
bel these energies according to the derivation order of the
�tted function f .

The 0-order energy

Estab= E0 =
1

Area(W)

Z

W
k f k2 (4)

has been used for the �tting process of Spherical Harmonics
in the CLS technique presented in [LLW06] to limit post-
processing compression noise. An important drawback in
our context is that increasing the stabilization (i.e.l ) pulls
the �tted function towards zero (i.e. black color) in regions
where no or few samples are located, as shown in �gure2a.
This is compensated in [LLW06] by �xing a target energy,
which is intricate in our case due to poor sampling condi-
tions.

The 2nd-order (bending or thin-plate) energy is de�ned in
an(x;y) parametric domain by

Estab= E2 =
ZZ

¶2 f
¶2x

+ 2
¶2 f
¶x¶y

+
¶2 f
¶2y

(5)

in
cr
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l

(a)E0 (b) E1 (c) E2

Figure 2: Comparison of the energiesEstab. All functions
�t the same input green and gray samples.E0, E1 and E2
behave differently asl increases.

On a domain without border (e.g. an entire sphere),E2 is
equal to 1

Area(W)

R
WkDf k2, whereD is the Laplace-Beltrami

operator [Wah81]. It was used in [WAA � 00] for �tting lu-
mispheres (locally supported functions parametrized on the
sphere) in order to cope with the occlusion problem which
under-determines the �tting.E2 penalizes high frequencies.
However, it sometimes fails to prevent unexpected extrapo-
lated values because linear functions haveE2 = 0. This can
be observed in �gure2c: though the input samples contain
only green and gray, magenta still appears even after strong
stabilization (highl ).

We argue that a better energy should prevent strong color
variations (i.e. high frequencies) in areas of the hemisphere
not covered by samples. It should also prevent the func-
tions to exceed the range of the color space in these areas:
such out-of-bound color values would create artifacts when
clamped during rendering. In other words the energy should
�atten the function. Therefore we introduce the 1st-order en-
ergy

Estab= E1 =
1

Area(W)

Z

W
kr f k2 (6)

The relevance ofE1 lies in its goal: when increasingl or
when the number of samplesN equals 1, it pullsf towards
a constant value, which represents a diffuse color. This be-
havior is observed when increasingl in �gure 2b. E1 can be
computed in any function basis as a convex quadratic form
w.r.t. the coef�cients. Depending on the basis, integration
can be analytical or numerical.
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Increasing variance Increasing bias

Precision Stability

bE

ll = 0 l = 1

Figure 3: Interpretation of expected prediction error graphs.
l = 0 corresponds to unconstrained least-squares. Smalll
values imply high precision but low stability: the errorbE is
penalized by high variance. Largel values imply low preci-
sion but high stability: the errorbE is penalized by high bias.

5. Statistical Analysis

The �rst goal of any �tting method is to precisely �t to in-
put data. However, other issues (e.g.stability, smoothness)
may also be important. We investigate the stability, de�ned
as the resistance of the method to input sampling conditions.
Precision and stability change conversely when intensifying
the stabilization (i.e. increasingl in eq.3): the stability in-
creases while the precision decreases. A tool for assessing a
trade-off is useful.

5.1. Bias versus variance

Figure1 provides an intuition of this trade-off. Three input
sample sets (�g.1a) have imperceptible differences. With-
out any stabilization (�g.1b) the precision is high but the re-
sult suffers strong variance (the �tted functions differ from
each other). The variance measures how the actual �ttings
deviate from their mean. A slight stabilization (�g.1c) over-
comes the problem (the three functions are alike) while still
closely �tting to the input samples. A strong stabilization
(�g. 1d) �attens the resulting function: the precision drops
(poor approximation of the input samples) because bias is
introduced. The bias measures how the actual �ttings devi-
ate from “true values”.

The expected prediction erroris a statistical measure
which includes both variance and bias. It measures the capa-
bility of a method in successfully �tting on new data sets. As
shown in �gure3 it can be plotted againstl . As l grows, this
error �rst decreases because stabilization reduces the vari-
ance. Then it increases because stabilization raises the bias.

This curve allows for selectingl : the minimum error is

(a) Scanner setup (b) An input photo (c) All viewpoints

Figure 4: Acquisition procedure for the double dragon
model. 4a: the scanner setup used for geometry measure-
ment. 4b: one of the photographs taken during photometry
acquisition.4c: placements of the 200 photographs acquired
using a hand-held camera.

an optimal trade-off between precision and stability. In the
purpose of comparing different methods (choice ofEstab),
several curves can be compared on the same graph. In sec-
tion 6 we also compare curves in order to evaluate the impact
of a change in the basis, in the color space, or in the sampling
density.

5.2. Bootstrap

In order to compute the trade-off curves the expected pre-
diction error has to be estimated. As discussed in section2.3
our implementation has to cope with both scarce input data
and little knowledge about data distribution. Indeed, when
resulting from an acquisition of real objects, the input data
are perturbed by color and direction noise resulting from reg-
istration problems and the lack of accuracy of the acquisition
devices. Besides, registration failures or self-occlusions may
result in missing viewing directions. It is dif�cult to derive
not only a statistical model of such perturbations but also the
corresponding expected prediction error. As a consequence,
we estimate the error using a bootstrap process, which does
not require any statistical data model.

The process is given a setT of N samples as input.
The main idea is to repeatedly divideT into a training set
(called bootstrap) and a validation set. The training sets are
used to �t the functions while the validation sets are used
to estimate the error. The bootstrap process consists of 3
stages [HTF01]:

� B bootstrapsfT 1; : : : ;TBg are formed. EachTb is a set
of N samples randomly drawn with replacement fromT .
Note that redundancy will appear withinTb.

� A function fb is �tted to each bootstrapTb.
� For each samplen 2 T the squared error is averaged over

the bootstraps that do not containn. The error is eventu-
ally estimated by the average over the samples:

bE =
1
N

N

å
n= 1

1
#f b=n =2 Tbg å

b=n=2T b

(yn � fb(xn))2 (7)

This estimation is computed for everyl in order to plot the
curve.

c
 2013 The Author(s)
c
 2013 The Eurographics Association and Blackwell PublishingLtd.



K. Vanhoey, B. Sauvage, O. Génevaux, F. Larue & J.-M. Dischler / Robust Fitting on Poorly Sampled Data for IBR

Not on an input viewing direction.

(a) Input pictures

(b) No stabilization (ULS):PSNR= 21:51dB

(c) Slight stabilization (CLS):PSNR= 19:59dB

(d) Strong stabilization (CLS):PSNR= 14:51dB

Figure 5: Reconstruction of the double dragon model (polynomial basisof degree 4, stabilization with theE1 energy). Images
on the two left-most columns match one of the input viewpoints (�g.5a). Without stabilization, artifacts appear when the virtual
camera moves away from the acquired viewpoints (�g.5b). A slightly stabilized �tting removes artifacts while still preserving
view-dependent features (�g.5c). A too strong stabilization removes both artifacts and view-dependent features (�g.5d).

Bootstrap is ef�cient for sparse data (N small) because
one can increaseB independently ofN. This is especially
useful for testing real-world data whose density can hardly
be controlled. By usingB = 104 bootstraps our experiments
achieve about 2 signi�cant digits forbE.

5.3. Measuring precision

bE may be quite large because it estimates the expected error
on new data sets. It is useful for selectingl and for compar-
ing methods but it does not measure the actual �tting preci-
sion.

In the context of very sparse data, which we know to
be too sparse to capture complex material behavior, it is
vain to try to reproduce an underlying ground truth. Indeed,

this would require strong assumptions or external knowledge
such as lighting conditions or ad-hoc material models. The
versatile acquisition process we consider hinders such as-
sumptions. Therefore, we will not use a reference �tting to
compare any result to. The input samples are considered as
the only truth. Thus, the precision of a �tted function is di-
rectly given byEMSE (de�ned in eq. (2)). Since the range
of values is very large we use the peak signal-to-noise ra-
tio [GG92]:

PSNR= 10log10

�
Emax

EMSE

�
(8)

such that an absolute difference bene�cially represents a rel-
ative ratio: 10dBrepresents a factor of ten.
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Figure 6: Error graphs for different input data sets using
spherical harmonics (l = 4). Top: sparse and non uniform.
Bottom: dense and uniform.
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Figure 7: Numerical comparison of energies. Polynomial ba-
sis (d = 4) �tting on a sparse and uniform sampling.

6. Results

The need for stabilization depends on many parameters:

� The noise induced by the acquisition and reconstruction
pipeline.

� The sampling distribution. According to our classi�cation
of section3.2we tested various sampling qualities.

� The basis functions. We experimented with two widely-
used bases: Spherical Harmonics (SH) and Polynomial
Basis (PB). Polynomials of degree 2 are common for rep-
resenting Polynomial Texture Maps [MGW01]: we ex-
tended it to higher degrees and applied it also to SLFs.

� The size of the basis. We tested SH bases withl = 2 up

to 20 levels (containingl2 functions). We tested PBs of
degreed = 2 up to 4 (containing(d + 1)(d + 2)=2 func-
tions).

� The color space.

In the present section we discuss all these parameters us-
ing numerical results from our statistical analysis. Since the
user may also be interested in a subjective quality of the �t-
ting (he may expect “pleasant” results), numerical and visual
results are also compared.

6.1. Experimental data

Experiments were performed on four different types of data
revealing different properties of the �tting process.

Standalone light �elds show point-wise �tting behavior.
Besides, they are used as input to our statistical analysis in
order to generate quantitative results with controlled sam-
pling conditions. We therefore built different samplings cor-
responding to the properties listed in section3.2. We com-
puted the graphs of these �ttings for different stabilization
energies and bases.

Real-world SLF data were acquired as illustrated in �g-
ure 4. Geometry is acquired with a 3D-scanner operating
with structured light. A unique point cloud is obtained by
registering and merging different scans. A polygonal mesh
is then reconstructed using the Poisson Surface Reconstruc-
tion algorithm [KBH06]. Photographs are taken with a hand-
held high-resolution camera. Pattern-based camera calibra-
tion and picture registration is used for sample projection.
Such real data emphasize the need for stabilization: even if
hundreds of photographs are taken, many hemispheres are
poorly sampled because some directions are obstructed by
the object or by the ground.
The double dragonmodel (�g. 5) is interesting for its
very detailed features both in geometry (subtle details
and compound curves) and appearance (different colors
and re�ectance properties). Photometry was acquired using
200 photographs (�g.4c). SLFs were computed per vertex
(1:8M vertices). Hemispheres have in average 81 samples
but 5:5% have less than 20 samples.
The Mask model (�gs. 13 and 12) illustrates the case of
an intensive measurement of a real object: 672 photographs
were taken and registered to the geometry. The mesh has
been parametrized to a texture image and SLFs were com-
puted per texel (2:8M texels).

Real-world image relighting data illustrate our method
when no occlusions arise. Indeed, for image relighting, ge-
ometry is not accounted for and all color samples are always
de�ned for every pixel. Thus, it mainly shows the results
when the light direction moves away from the acquired sam-
ples. For theCapitello (�g. 11), 36 photographs were ac-
quired with a resolution of 1000� 750 pixels.
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E0

E1

E2

(a) SH, RGB (b) PB, RGB (c) SH, LUV (d) PB, LUV

Figure 8: Evaluation of the consistency w.r.t. color space and
function basis ofE0 (l = 0:01), E1 (l = 0:01) andE2 (l =
0:001). CLS �tting is applied to only three (respectively red,
blue and green) samples in two bases (SH,l = 4, and PB,
d = 4) for two color spaces (RGB and CIELUV).

Synthetic data were created by making virtual photographs
based on Monte-Carlo ray-tracing. Since the lighting envi-
ronment is controlled and since noise induced by the acqui-
sition pipeline is avoided, such data has the advantage of
isolating the sampling condition issues.
TheStanford Bunny(�g. 9) was lit with 3 light spots. 51 vir-
tual photographs are not uniformly distributed around the
object. An average of 11 input samples per hemisphere is
obtained. 6:2% of the hemispheres have less than 5 samples.

6.2. Robustness issues

The need for stabilization. Despite intensive photographic
acquisitions, real data nearly always suffer from poorly sam-
pled hemispheres. The double dragon model (�g.5) contains
almost every situation listed in section3.2:

� hemispheres oriented upwards are densely and uniformly
sampled;

� hemispheres oriented downwards are very sparsely sam-
pled;

� in-between hemispheres may be densely but non-
uniformly sampled due to occlusions.

A naive unconstrained �tting (ULS) is not stable enough
to prevent artifacts when the viewing direction moves away
from the acquired viewpoints (see �g.5bon the right). A sta-
bilization may eliminate most of them (�g.5c). Yet it must
be slight enough (i.e. l small) to preserve the viewing direc-
tion dependent features: in our example of �gure5, a slight
stabilization (l = 0:01) only reduces the average PSNR from
21:51dB to 19:59dB.

Numerical results (�g.6) con�rm these visual observa-
tions. For sparse and non-uniform sampling (top), the pre-

(a) ULS

(b) E0

(c) E1

(d) E2

Figure 9: Virtual light �eld usingSH(l = 4). Visual com-
parison of energies: our energyE1 (in row (c)) provides the
most consistent results.

diction error of the ULS �tting (any curve atl = 0) is high.
A slight stabilization (l = 0:05) improves the stability. The
same stabilization is also ef�cient for dense sampling (bot-
tom) while preserving the precision: the PSNR barely de-
creases from 10dB (ULS) to 9dB (with E1). This suggests
that a slight stabilization is effective when needed while lim-
iting precision loss when the sampling is good.

Comparing the stabilization energies is a key point of the
present study. When the sampling is dense or uniform the
three energies reach similar trade-offs (see �g.7). Artifacts
arise for poor samplings.
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Figure 10: Comparison between polynomial basis (d = 4, K = 15, dashed lines) and spherical harmonics (l = 4, K = 16, solid
lines): �tting on a sparse and uniform sample.E0 fails to stabilize in SH bases because of the sparsity whileE1 andE2 provide
similar results in PB and SH.

As mentioned in section4, E0 tends to produce black
color in non-sampled areas of the hemisphere. This can be
observed in �gure8 top, and causes artifacts on the bunny
(�g. 9b). The prediction error contains much bias, even for
small l values. Therefore, the error curves are unable to
reach low values (�gure6 top).

On the other sideE2 may fail to prevent extrapolated val-
ues (yellow regions in �gure8 bottom). This is illustrated in
�gure 9dby excessive intensity variations.

In contrast our energyE1 fairly interpolates between
the 3 input colors only (�g.8 middle). The result on the
bunny (�g. 9c) is better balanced between preserving specu-
lar highlights and preventing artifacts.

Robustness w.r.t. the basis.It may be interesting for the
user to choose the function basis independently of the �tting
method. Therefore we analyze the behavior of eachEstab
w.r.t. the basis. By comparing �gures8avs 8b and8c vs 8d,
we see thatE0 andE2 do not behave the same when the ba-
sis changes whereas our energyE1 provides very similar and
predictable results. This emphasizes that the artifacts dis-
cussed in the previous paragraph appear rather with spherical
harmonics forE0 and rather in polynomial bases forE2. Fig-
ure10compares the PB and SH bases with a similar number
of basis functions on a sparse and uniform sample:E0 ex-
hibits much higher errors in SH bases.

Robustness w.r.t. the size of the basis.Complex lighting
can only be captured when a rich enough function basis is
used. Indeed, a too poor basis will induce an incompress-
ible model bias due to its inability to represent complex in-
puts, resulting in over-smoothing. This can be observed in
�gure 13 where highly specular effects are smoothed when
decreasing the number of basis functions.

To represent complex re�ection behaviors, the user may
be interested in safely increasing the number of basis func-
tions. When doing so, consistent results are expected. Fig-
ure 11 compares image relighting obtained from a conven-
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Figure 11: Robustness w.r.t. the size of the basis: CLS �tting
is consistent when changing the degree. For an image re-
lighting application, photographs were taken corresponding
to 36 point light source directions. The �ttings are performed
with PB of degree 2 and 4 (using ULS or CLS withE1 and
l = 0:01). The disk represents the lighting directions on the
hemisphere: squares are input directions (real pictures) while
the red star is a relighting direction (virtual picture).

tional bi-quadratic PTM [MGW01] and a bi-quartic PTM.
Compared to ULS,E1 provides consistent �ttings when
changing the size of the basis.
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input picture from 672 from 336 from 168 from 84 from 42 from 21 from 11
pictures picturespictures picturespicturespicturespictures

Figure 12: Robustness w.r.t. sparsity. The SLF for the mask model has been reconstructed from different view samplings
roughly uniformly distributed. Fitting was performed in SH (l = 20) with E1 andl = 0:01. The input picture of the �rst line
is included in all samplings (down to 11 pictures): few differences are visible. The input picture of the second line is discarded
from the samplings below 336 pictures: the result looks smoothed but remains consistent.

Robustness w.r.t. sparsity.Figure12shows the reconstruc-
tion of the mask for various numbers of input pictures. By
using a very large amount of basis functions, model bias is
almost discarded such that the �tting method can be �nely
observed on this picture. Though degradation is unavoidable,
our method provides consistent results when the number of
samples decreases.

Robustness w.r.t. color space.We mainly used RGB but
other color spaces might be appropriate. We experimented
with the CIELAB and the CIELUV space. The same robust-
ness problems occur and the same ranges ofl are effective
for reducing artifacts.

It may be interesting for the user to choose the color space
independently of the �tting method. By comparing the �g-
ures8a vs 8c and8b vs 8d, we see that, in contrast toE0
andE2, our energyE1 is much more consistent when chang-
ing the color space. Note also that the discontinuities withE0
andE2 in CIELUV caused by out-of-bound color values are
prevented withE1, as it was designed for (see section4).

6.3. Balancing precision and stability

The weighting factor l in equation (3) balances be-
tweenEMSE andEstab, i.e. between precision and stability
of the �tting. A good weighting valuel can be de�ned as
high enough to discard visual artifacts (high variance) and
low enough to avoid over-smoothing (high bias). Real data
exhibit various sampling conditions over the surface. Com-
puting the optimall for each surface point would be compu-
tationally intensive. Instead we suggest that a constant value
can be chosen. When applied on standalone light �elds our
statistical analysis is useful for evaluating the robustness and
comparing the energies. In order to determinel we have to
estimatebE on real-world data. Therefore we applied the fol-
lowing pragmatic protocol.

We computed the error curves for 104 surface points of
the double dragon. From these 104 curves we plotted the
point-wise 95th, 98th and 99th percentile curves (�gure14)
which roughly represent the behavior of the 5%, 2% and 1%
worst sampled points. The very low 95th percentile curve
proves that most of the surface points are well sampled and
barely require stabilization:l must be as close as possible to
the optimum for these points in order to avoid global over-
smoothing. The 98th and 99th percentile curves represent
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input picture10 levels 20 levels

Figure 13: The larger the basis, the lower the bias: a poor
basis is unable to represent complex re�ection behaviors.
The right-hand side image shows a SLF reconstruction us-
ing 20 SH levels (E1 stabilization,l = 0:01). Below, the
difference w.r.t. the reference image (center) suggests that
the bias is very low. Conversely, the left-hand side SLF re-
construction was �tted on 10 SH levels. Under equivalent
stabilization parameters, the loss in quality suggests that the
degradation is indeed due to the basis size.
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Figure 14: Point-wise 95th, 98th and 99th percentile error
curves. Fittings are performed in SH basis (l = 4) stabilized
with E1 on 10000 surface points of the double dragon.

the minority part of poorly sampled surface points:l must
be just high enough for these points in order to avoid local ar-
tifacts. We deduce thatE1 performs well forl 2 [0:01;0:05].
Similar tests show thatl 2 [0:01;0:05] is suitable forE0 and
thatl 2 [0:001;0:005] is suitable forE2.

These actual values ofl are derived from one object but
our tests suggest they remain valid for others. We conjecture
that they rather depend on the noise magnitude, which is not
controlled in the statistical analysis. Since the noise closely
depends on the acquisition devices and on the reconstruction
algorithms, it would be worth applying the same protocol
when changing the acquisition process.

7. Conclusion

In this paper we investigated the reconstruction of color
functions for surface light �eld rendering and image relight-
ing by �tting parametric functions. We laid out the need for
stabilization in case of sparse and non-uniform sampling in
order to prevent �tting artifacts while preserving high fre-
quencies present in the input data. We de�ned a new stabi-
lization energy that makes the �tting robust and compared it
with two other known energies. Our experiments were held
on synthetic standalone light �elds, synthetic models with
simulated photographic acquisition and real-world acquired
data. Both visual and numerical results show that our energy
improves the stability with respect to the sparsity of the sam-
pling, to the non-uniformity of the sampling, to the function
basis (polynomials and spherical harmonics were tested), to
the size of the basis, and to the color space.

To complement usual visual results, we provided a sta-
tistical analysis for measuring the robustness of any �tting
method. We also derived a pragmatic protocol for balancing
between precision and robustness, such that no additional
adjustment is needed to handle poorly and well sampled data
in the same process. It is easy to implement and can be used
to tune the �tting on its own acquired data.

In this study we processed the data independently at each
point/texel. Within this setting, stabilization proved to be ef-
fective in removing artifacts. However the �tted functions
will always exhibit few variations when the data are too
sparse to locally capture complex material behavior. To fur-
ther improve the results, we could take the spatial coherence
into account by propagating directional information between
neighboring texels. Besides, additional knowledge about the
material and/or the environment could be introduced.
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