
ACM Reference Format
Vanhoey, K., Sauvage, B., Larue, F., Dischler, J. 2013. On-the-Fly Multi-Scale Infi nite Texturing from Ex-
ample. ACM Trans. Graph. 32, 6, Article 208 (November 2013), 10 pages. DOI = 10.1145/2508363.2508383
http://doi.acm.org/10.1145/2508363.2508383.

Copyright Notice
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or commercial advantage and that
copies bear this notice and the full citation on the fi rst page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifi c permission and/or a fee. Request permis-
sions from permissions@acm.org.
Copyright © ACM 0730-0301/13/11-ART208 $15.00.
DOI: http://doi.acm.org/10.1145/2508363.2508383

On-the-Fly Multi-Scale Infinite Texturing from Example

Kenneth Vanhoey, Basile Sauvage, Frédéric Larue, Jean-Michel Dischler∗

ICube, Université de Strasbourg, CNRS, France

Abstract

In computer graphics, rendering visually detailed scenes is often
achieved through texturing. We propose a method for on-the-fly
non-periodic infinite texturing of surfaces based on a single image.
Pattern repetition is avoided by defining patches within each tex-
ture whose content can be changed at runtime. In addition, we
consistently manage multi-scale using one input image per repre-
sented scale. Undersampling artifacts are avoided by accounting
for fine-scale features while colors are transferred between scales.
Eventually, we allow for relief-enhanced rendering and provide a
tool for intuitive creation of height maps. This is done using an ad-
hoc local descriptor that measures feature self-similarity in order
to propagate height values provided by the user for a few selected
texels only.
Thanks to the patch-based system, manipulated data are compact
and our texturing approach is easy to implement on GPU. The
multi-scale extension is capable of rendering finely detailed tex-
tures in real-time.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Viewing Algorithms I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Color,
shading, shadowing, and texture I.4.6 [Image processing and com-
puter vision]: Segmentation—Region growing, partitioning

Keywords: Real-time Rendering, Infinite Texturing, Texture
Tiling, Multi-scale Textures, Relief Textures, Color Space

Links: DL PDF WEB VIDEO

∗e-mails: {Kenneth.Vanhoey,Sauvage,FLarue,Dischler}@unistra.fr

1 Introduction

Providing efficient solutions for rendering detailed realistic en-
vironments in real-time applications, like games or flight/driving
simulators, has always been a major focus in computer graph-
ics. Details can be efficiently rendered using textures. But de-
spite improvements of graphics hardware, memory capacity and
data streaming techniques, which allowed over the recent years for
increased scene complexity, texturing techniques must still fulfill
constraints which are difficult to unify in a single approach. Ideally,
they should 1) be as fast as possible to avoid penalizing frame rates,
2) use compact texture maps to limit streaming and data transfers
that also penalize frame rates, 3) be non-periodic to avoid visual
repetition artifacts, 4) produce fine details to avoid undersampling
artifacts, 5) be enhanced with relief when details represent geom-
etry like cracks or bumps to improve the rendering quality by ac-
counting for parallax effects.

Meeting the five aforementioned conditions simultaneously is an
open problem. Non-periodic real-time rendering of large surfaces,
as well as compactness (properties 1, 2 and 3) can partially be
solved by Wang tiling [Cohen et al. 2003] or corner tiling [La-
gae and Dutré 2006]. However, to break the repetition effect one
should provide tiles with multiple different borders or corners, and
the number of tiles grows exponentially with that respect. Both
compact and finely detailed textures (properties 2 and 4) can be de-
fined thanks to multi-scale textures. However, stochastic tiling is
not easy to extend to multi-scale texturing because border condi-
tions must be made consistent throughout scales [Kopf et al. 2006].
Building the relief (property 5) is tedious without a priori knowl-
edge if only a single image is available.

In this paper, we describe a new system to model textures that match
all previous properties. It improves on stochastic texture tiling. Our
system coherently includes the following contributions:

• Real-time non-periodic infinite surface texturing is achieved
by modifying texture tiles at runtime, yet neither introducing
visual artifacts nor requiring heavy computations. The mem-
ory consumption is also reduced compared to state-of-the-art
tiling.

• Multi-scale texturing consistently blends colors between mul-
tiple layers of texture: our color transfer mechanism avoids
popping and ghosting artifacts by respecting the features of
each scale.

• Relief enhancement is integrated as a height map texture,
which is kept consistent with the color texture.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

http://doi.acm.org/10.1145/2508363.2508383
http://portal.acm.org/ft_gateway.cfm?id=2508383&type=pdf
http://icube-web.unistra.fr/papr/2013/2-VSLD13
http://icube-web.unistra.fr/papr/2013/2-VSLD13

Figure 1: Mono-scale infinite texturing flowchart and its interaction with the multi-scale extension and relief enhancement.

In addition we provide a tool that makes it possible to interactively
create a height map from a single color texture with a few clicks
only. The user only needs to provide height values for a few se-
lected points. These values are then propagated to the whole height
map thanks to similarity between texture features. This tool is a
useful complement to existing image-based modeling techniques.

In the remainder of the paper, after a review of related work (sec-
tion 2), we give an overview of our system (section 3). We then
describe the color space (section 4) used throughout the process-
ing pipeline. Sections 5, 6 and 7 describe our main contributions,
that is, respectively, our method for non-periodic infinite texturing,
its extension to consistent multi-scale texturing, and relief enhance-
ment together with our height map creation tool. Visual results,
performance and limitations are discussed in section 8.

2 Related work

Texture synthesis and surface texturing are vast research areas. In
the following, we briefly survey closely related works. We are con-
cerned with image-guided, real-time, non-periodic and multi-scale
surface texturing.

Non-periodic surface texturing. Two main streams can be dis-
tinguished: 1) parameter-based models used to directly define tex-
tures in the form of mathematical functions, 2) “by example” syn-
thesis techniques.

The first category is well adapted to the parallel runtime compu-
tation of surface textures. Many models, procedural for most of
them, have been developed from the mid-eighties on [Ebert et al.
2002]. Texture periodicity is avoided by introducing random func-
tions, such as noise [Perlin 1985]. But some works [Bourque and
Dudek 2004] argue that procedural textures are hard to define while
automatic methods [Gilet and Dischler 2010; Galerne et al. 2012]
are limited to a narrow range of patterns.

By example synthesis techniques [Wei et al. 2009] have been intro-
duced to automate texture synthesis. The user supplies an exam-
ple image to get a similar texture of larger size. These techniques
require important computations, necessarily performed on explicit
data arrays, because neighborhoods need to be accessible in order to
account for local dependencies. This constraint makes runtime tex-
turing much more intricate. Lefebvre and Hoppe [2005] introduce
a fast parallel per-pixel technique. Non-periodic texturing of ter-
rains is illustrated with additional clipmapping [Losasso and Hoppe
2004]. A multi-scale extension is introduced in [Han et al. 2008],
allowing users to define the relationship between texture scales. De-
spite parallel implementation, computational requirements remain
too high to allow for fast non-periodic infinite texturing of surfaces.
To achieve real-time rendering, a drastic improvement in perfor-
mance is needed. A common solution consists in separating the

analysis and synthesis steps, as for Wang or corner tiling [Cohen
et al. 2003; Lagae and Dutré 2006]. Tiles can be pre-computed
and then randomly selected without propagating dependencies [La-
gae and Dutré 2005]. It therefore outperforms classical pixel –or
patch-based synthesis techniques. But with such tilings, repetition
artifacts cannot be completely excluded if the number of different
tile borders/corners is set too low (less than 4). This might often be
the case for memory reasons since two (resp. three) different bor-
ders/corners require already 16 (resp. 81) tiles. The lack of variety
in tile joints then results in a perception of the underlying rectilinear
grid. Another issue is that recursive extensions, as in [Kopf et al.
2006], are not trivial when considering multiple arbitrary patterns
representing different texture scales, because of complex dependen-
cies among sub-tile contents in addition to dependencies on joints.

Smooth transition between multi-scale surface details. Pro-
viding real-time smooth transitions between multiple scales of sur-
face details has been mainly addressed in the context of bi- or
multi-scale material design [Wu et al. 2011]. It generally consists
in making volumetric data (including bump/displacement textures)
consistent with BRDFs. For color texturing (i.e. with no accurate
relighting), as in our context, the usual solution trivially consists
in using multi-resolution maps. Extremely large multi-resolution
maps are common in the context of massive terrain data render-
ing [Treib et al. 2012] or mega-pixel texturing [Laine and Karras
2010], but they involve complex streaming mechanisms. Infinite
runtime texture synthesis, that we are concerned with, avoids mas-
sive data management.

Image-guided textures. Image-guided approaches aim at allow-
ing users to create textures from photographs [Bosch et al. 2011]
using interactive 2D manipulations. But most methods ignore un-
derlying relief, which is explicitly considered only for a small range
of specific patterns [Müller et al. 2007]. For recovering accurate
parallax effects during rendering, texturing techniques need an ex-
plicit relief representation [Chen et al. 2004]. To recover relief,
specific photograph/scanner-based measurement devices have been
developed [Ma et al. 2008], but they impose technical constraints.
Extracting relief from a single image is more difficult, for instance
with shape from shading (SfS) [Zhang et al. 1999]. It can be ap-
plied to texturing [Dischler et al. 2002]. But SfS makes strong
assumptions concerning illumination, viewing conditions, surface
smoothness as well as reflectance. The problem of SfS is known
to be ill-posed [Zeng et al. 2005]. Painting relief by using interac-
tive drawing tools is an interesting alternative solution for users.
But these tools require painstaking manipulations to adequately
choose brushes while texture features need to be drawn individu-
ally. [Brooks and Dodgson 2002] demonstrates that texture self-
similarity can be used to facilitate color texture editing. We extend
the use of feature self-similarity to facilitate relief texture editing.

208:2 • K. Vanhoey et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

3 Overview

In this section we give an overview of our infinite non-periodic tex-
turing process, explain the coherence of its parts, and stress the
usefulness of some tools. The process for mono-scale texturing is
summarized in figure 1 as well as its interaction with the multi-scale
extension and relief enhancement. The color conversion, fragmen-
tation, clustering and content selection steps, which we summarize
in this section, are pre-processed.

As an input we are given a set of tiles which are processed sepa-
rately before the rendering stage. In this work we used a single pe-
riodic tile though other tilings (such as Wang/corner tiling) would
also work in our process. The main idea is to randomly modify tile
content on-the-fly at the rendering stage, so as to break the repeti-
tion effect. Therefore, we pre-compute a tile partitioning composed
of patches for which we select a set of interchangeable contents.
All contents for a given patch have the same shape, but correspond
to different locations in the tile. They are chosen such that they
can be exchanged while minimizing the appearance of seams. At
rendering, each time a tile is repeated the content of its patches is
randomly selected.

The multi-scale extension relies on this mono-scale process, which
is first computed separately on several layers of texture, represent-
ing patterns viewed at different scales. For rendering, the colors
of two consecutive layers are blended according to the viewing
distance. It requires colors to be transferred between scales, usu-
ally from coarse to fine. Our contribution is a novel on-the-fly
color transfer mechanism designed to minimize visual inconsis-
tency (popping/ghosting and blocky artifacts) while blending. The
key idea is that color is transferred not on individual texels but on
pre-computed fragments, which are small pieces of texture, whose
colors can be modified without introducing seams.

Fragments capture small features with a homogeneous color (e.g. a
leaf or a petal in figures 4 and 8), which is decisive for multi-scale
color transfer. On the contrary, patches must encompass several
texture features (e.g. a few flowers) in order to break the repetition
yet keeping visual feature arrangements. However, patches must
be coherent with fragments, because content exchange (per patch)
and color transfer (per fragment) will be combined at rendering. In
addition they share a common objective: hiding seams, may they
be due to content exchange or to color transfer. Here, we exploit
the fact that seams are less perceivable in regions of high contrast:
fragments are computed such that their borders match high con-
trasts. Patches are then defined as clusters of fragments.

A dedicated color space, that we call principal variation color
space, is designed to meet several objectives: to facilitate the build-
ing of fragments, and the measure of contrasts and seams; to repre-
sent colors compactly; and to allow for improved multi-scale anti-
aliasing. It separates a few dominant colors from local variations
for each texture tile. It is used throughout the process: a tile is first
and foremost converted into the principal variation color space, and
colors are converted back only at rendering.

Relief enhancement is also integrated. If a height map is provided,
it must be considered for the design of patches because content ex-
change may introduce geometric seams. Since patches are based
on fragments which follow dominant colors, we introduce relief at
the very beginning (when building the color space), as an additional
coordinate to color channels.

4 Principal variation color space

As outlined before, we propose a new texture-dependent color rep-
resentation. Similarly to SLIC superpixels’ segmentation [Achanta

Figure 2: Principal variation color space separates dominant
color from local variations. Each color is replaced by an index i
(referencing a dominant color and a principal variation), and vari-
ation coordinate v (right column). The original tile (left) suffers
slight loss (middle) due to quantification and dimension reduction.

et al. 2012] we extract a set of dominant colors by clustering, be-
cause it proved to be simple and efficient for extracting features.
We combine it with an intra-cluster dimensionality reduction for
capturing finer variations. More sophisticated clustering methods
could be used instead. However they often put a lot of effort in
avoiding over-segmentation, which is not a problem for fragmenta-
tion neither for exchanging content. In particular [Omer and Wer-
man 2004] define clusters by lines together with a variation along
it. We experienced however that texture color histograms do not
exhibit such lines.

Given an input texture in CIELUV space, we compute a table of
color couples (Di=dominant color, Vi=principal variation). A color
C is then compactly represented by an index i and a variation co-
ordinate v such that C = Di + vVi, as shown in figure 2. Domi-
nant colors are intended to roughly classify features in the texture
while local variations are described by v. It will be of peculiar im-
portance for color transfer (section 6) that fragments respect these
classes. Moreover blending dominant color and principle variation
separately will improve anti-aliasing.

Given an input texture T , a clustering of texel colors is performed
using K-means. Within each cluster i, a PCA produces a mean
color Di and three principal components: the principal variation Vi
is the component associated to the largest eigen-value. The color
T (p) of any texel p is represented by its cluster index i(p) and
its coordinate v(p) along Vi(p). This approximation results in a
squared error∑

i

∑
p∈cluster i

|T (p)− (Di + v(p)Vi)|2 (1)

which we would like to minimize. So we use
|T (p)− (Di + v(p)Vi)|2 instead of |T (p)−Di|2 for clus-
tering at each K-means iteration.

On-the-Fly Multi-Scale Infinite Texturing from Example • 208:3

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

Figure 3: Fragmentation proceeds in two steps. First, fragments
are grown from seeds. Texels are added to a fragment when they do
not exceed the contrast threshold value. Secondly, a cleaning step
eliminates too small fragments by dispatching their texels in bigger
neighboring fragments, so as to account for high-frequency noise.

Defining the number of classes is left to the user: the number of
dominant hues is a good guess and easy to determine. K-means
is known to be sensitive to the initial values of Di. We define a
few initial sets by octree quantization [Gervautz and Purgathofer
1990] with different scalings of the luminance coordinate, and save
the one that ends up with the lowest error. Results are shown in
figure 2.

5 Non-periodic infinite texturing

Mono-scale infinite texturing (figure 1) processes input texture tiles
independently. Each tile is partitioned into areas called patches,
each of them having a set of interchangeable contents that can be
randomly selected at rendering. The delicate task is to define the
patches and their contents such that no seam is perceptible.

A tile is first converted into the principal variation color space using
the procedure of section 4. A fragmentation stage (detailed in sec-
tion 5.1) partitions the tile into small fragments which separate tex-
ture features. Each fragment has a uniform dominant color. Frag-
ments are then clustered into patches of similar sizes, with irregular
boundaries. At last, for each patch, a set of interchangeable con-
tents are pre-selected in the tile in such way that an exchange will
not generate new salient seams.

5.1 Fragmentation

Fragments are built by region growing. Figure 3 illustrates the two
steps of fragmentation: region growing and cleanup of the smallest
regions. The algorithm takes as an input a texture T and a contrast
threshold τ .

Region growing. Regions F are grown around a seed. A texel p is
added to F only if i) it is a 4-neighbor of F , ii) its color index i(p)
is the same as for the entire region, iii) its variation coordinate does
not exceed the contrast threshold w.r.t. the average of the current
region: ‖v(p) − 1

|F |
∑

q∈F v(q)‖ < τ , iv) the size of F does
not exceed a maximum (see below). When no more texels of the
border of the current region respect these constraints, the region is
closed and now defines a fragment. The algorithm then iterates by
growing a new region around a random texel among those bordering
a previously created fragment, until all texels are accounted for.

Fragment cleaning. Some fragments can be too small, down to a
few texels, due to noise and high frequency variations. A cleanup
of these small fragments is therefore necessary. We proceed by
emptying, as long as too small fragments exist, the smallest among
them and dispatch their texels into the closest neighboring regions
(in terms of average variation coordinate).

Parameter tuning. Since the computation time is low enough to
provide interactive feedback, the τ parameter can easily be defined

empirically. To do so, the user has to lower it until no fragments
encompass multiple visual features that are significant to him (e.g.
a brick, a petal, etc.). A tile will typically have a few hundreds
of fragments in the end. The minimal size of a fragment can then
be defined using a slider. The user increases it until the “noisy”
fragments have vanished (see figure 3). Finally, in order to break
too large fragments, the user lowers the maximal size (usually down
to a several thousand texels).

The resulting fragment map has some useful properties. Firstly the
fragments have similar sizes, which is important for subsequent
clustering (section 5.2). Secondly all texels of a fragment have
the same dominant color and the same principal variation (i.e. in-
dex). Thirdly the variation coordinate within a fragment is quite
uniform. As a consequence fragments tend to capture features, and
their boundaries often match high contrast in the texture. This re-
sults in texture masking that will greatly help in hiding seams, both
for patch content exchange (section 5.2) and for multi-scale color
transfer (section 6).

5.2 Patches with interchangeable contents

The core of our mono-scale texturing lies in the construction of a
patch map together with interchangeable contents. Each patch P is
a region of the texture. It is associated with a set of contents {Pi}
selected as regions of the same shape as P elsewhere in the texture.
Therefore, the patches are chosen such that the content can be ex-
changed at rendering without introducing new visible seams. This
is achieved by two means.
First the patch borders correspond to high contrasts, which are
efficient in masking changes. An explanation for this is Weber-
Fechner’s law that states that the just-noticeable difference between
two stimuli is proportional to the magnitude of these stimuli. For
instance, assume we are exchanging the contents P1 and P2 in a
patch P . The color change P1 − P2 may introduce a visible seam
on the border ∂P . If the contrast around ∂P is high, then the per-
ception of P1 − P2 is reduced.
Second, the contents are chosen such that dominant colors on the
border coincide. We derive a measure of the visual impact that
strongly penalizes the appearance of seams. That is, consecutive
high changes along the border have an important impact on seam
perception, conversely to randomly distributed high changes.

Note that our approach consists in a fixed patch shape for several
contents, which is crucial for the upcoming real-time texturing. In-
deed, a content can now be stored by a translation vector t only,
meaning that T (p) will be replaced at runtime by T (p + t) for
all texels p ∈ P . We can afford neither on-the-fly computation
of the shape, nor storage of a shape per content. For this reason,
methods that define an optimal cut from a content, such as graphcut
textures [Kwatra et al. 2003] for instance, are not appropriate here.

Patch map. Patches are built from fragments by a straightforward
clustering procedure. It is illustrated in figure 4 top: we define
circles all over the tile using circle packing, and cluster fragments
lying into them. As a consequence patch borders match fragment
borders, which match high contrasts in the texture. A typical num-
ber of patches is 10 to 20 per tile. Some patches should encompass
tile borders or corners: this is essential for breaking the repetition
effect. For coherence at random tiling, the same patches must be
present in all possible neighboring tiles, which is always trivially
the case when using for example a single periodic tile.

Interchangeable contents. We want to select in T the best con-
tents for P , i.e. the best translations t. Therefore we need to mea-
sure the visual impact of the content replacement, i.e. the potential

208:4 • K. Vanhoey et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

Figure 4: Patches are built by fragment clustering and different
contents are selected for exchange. Our measure I estimates the
visual impact of content exchange more accurately than MSE, by
detecting sequences of adjacent boundary texels with high errors.

seams introduced at locations close to the border ∂P . We measure
the impact by averaging an error over a 2-texel-wide dilation of the
border:

I(t) =
1

|dil(∂P)|
∑

p∈dil(∂P)

E(p,p+ t) (2)

The choice for E is discussed below. For each patch we com-
pute Nt translations (actually 3 to 5) that minimize I . At runtime,
the content of each patch is modified by randomly selecting one
of these translations. Both memory consumption and computation
time are thus kept low, while diversity is improved since a tile with
NP patches results in NNP

t possible tile variants.

The per-texel error E must measure new seams while being quite
robust to noise. A standard choice would be the color squared dis-
tance ‖T (p) − T (p + t)‖2 thus the average is the mean squared
error. Its drawback resides in favoring a majority of low errors, re-
gardless of the distribution of higher ones. The latter can however
cause a more visible seam when packed together. Such a case is il-
lustrated in figure 4. The squared distance between color gradients
is also standard and has the same drawback.
We overcome this by using the classification defined for the domi-
nant colors. We also compute a saliency map on the variation co-
ordinate v using [Perazzi et al. 2012] from which we extract two
saliency classes (by thresholding). We intersect the dominant color
and saliency classifications to get a new set of NC classes j. It is
actually a refinement of the dominant color classes by a factor at
most two. Let Cj be the average color of class j. We define

E(p,p+ t) = (M ∗ δt)(p).δt(p) (3)

where δt(p) = ‖Cj(p)−Cj(p+t)‖2 is the map of class mean color
errors, and whereM is a magnification filter (we used a 7×7 mask

with ones everywhere).
This error can be understood as follows. The use of class mean
colors Cj(p) instead of T (p) serves as low-pass filter and quanti-
zation, such that the impact I is not disturbed anymore by majority
of texels with small color changes. The refinement of the dominant
colors’ classification (using saliency) captures important features in
v that are not present in dominant colors (e.g. see the dark region
on the bricks in figure 2). The factor M ∗ δt magnifies the error
δt such that: non-seam texels δt(p) = 0 are unchanged; isolated
seam-texels δt(p) > 0 are squared (becauseM ∗δt equals δt at p);
non-isolated seam-texels δt(p) > 0 are squared and magnified (lin-
early w.r.t. the number of neighboring seam-texels, i.e. the length of
the seam). As a consequence the visual impact I detects sequences
of adjacent texels with high errors, which are typical visible seams
(see figure 4).

5.3 Rendering

The GPU has at its disposal for each tile i) the color texture; ii) a
patch map which is a texture containing, for each texel, the index of
the patch it belongs to and a displacement vector towards the patch
center; iii) the table of contents (i.e. translations). At rendering the
tiles are repeated according to the chosen tiling algorithm. Let p
be a texel belonging to a patch of center c, which lies in the k-th
repetition of a tile. We need a random index in the table of con-
tents: it must vary with c and k (avoid repetition) but not with p
(the same content for the whole patch). This is done using a lin-
ear congruential pseudo-random number generator, initialized by a
hashcode computed from c and k. Because patches might overlap
tile borders, it is important that k is determined from the patch cen-
ter c and not from p. This way, every texel of the patch generates
the same number, regardless of which tile repetition it is in.

6 Multi-scale texturing

In this section we show how the technique presented in the previous
section can be used as a basis for multi-scale texturing. For the
clarity of explanation we present our method for two scales. The
main idea is illustrated in figure 5: the structure of the texture is
taken into account when transferring colors.

Assume that two input images underwent the process of section 5.
Thus at the rendering stage, two infinite textures TH (high resolu-
tion for close-ups) and TL (low resolution for far-away viewpoints)
can be generated independently. In order to be able to blend the two
textures without visual artifacts, one has to make sure that the color
of a texel q ∈ TL equals the average color of its footprintR on TH :

TL(q) =
1

|R|
∑
p∈R

TH(p) (4)

This condition is easily met in cases where multi-resolution tex-
tures can be pre-synthesized and stored in very large data arrays. It
mainly consists in shifting the average color over R onto TL(q). It
is more computationally intensive to do this when textures are com-
puted at runtime using stochastic tiling. Indeed, it would require to
compute the right-hand side of equation (4) on-the-fly, which is not
affordable. To avoid this we assume that the scale ratio is large
enough for R to cover a large part of the tile TH . So we can statis-
tically approximate the average over R by the average TH over the
entire tile TH . Consistent color transfer is processed at rendering
by shifting the color of any fine texel p:

TH(p)← TH(p) +
(
TL(q)− TH

)
(5)

On-the-Fly Multi-Scale Infinite Texturing from Example • 208:5

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

Figure 5: Top (input): colors from a texture TL (wood) are trans-
ferred to a texture TH (cracks). Per-texel: modifying individual
texel colors results in undersampling artifacts. Per-texel and bi-
linear filter of TL: blocks are blurred but the features of TH are
not respected. Per-fragment: modifying fragment colors improves
consistency, as if TL was made of TH .

Doing this for all fine texels p ∈ R results in undersampling arti-
facts (limit between two coarse texels q), as illustrated in figure 5
left. Blocks can be hidden by blurring TL using a bilinear filter, as
in figure 5 middle, but this produces ghosting. Bi-lateral filtering
on TL will not avoid these artifacts either: it operates de-noising
on the low resolution, while the point here is smoothing and over-
sampling. Actually, any method that does not take the structure of
TH into account creates the impression that TL is painted onto TH ,
whereas we would like that TH seems to constitute TL. We there-
fore exploit the fragment map of TH : the color of fragments can
be modified without introducing artifacts because they have been
computed accordingly. Thus we apply the same color shift for all
texels of a fragment (figure 5 right), which hides the color changes
on the fragment borders (no blocky artifacts) and increases the con-
sistency between scales (no ghosting). As shown in figure 6, we
do this by choosing q ∈ TL in equation (5) corresponding to the
center of fragment F containing p ∈ TH , not corresponding to
p itself. In other words we relax the footprint of q to match the
fragments borders.

At rendering, a smooth transition between TL and TH is computed
by linear interpolation according to the viewing distance. To further
reduce ghosting we exploit the color space: we fade the variational
component out more quickly than the dominant color. The varia-
tional color space brings even more flexibility, such as detail en-
hancement (scaling v) or different tuning for every dominant color.
All computations are done on the GPU by using only four texture
accesses: one to TL, one to TH , one to the fragment map, and again
one to TL at the location of the center of the fragment in order to
modify the color of TH .

This principle can be recursively extended to an arbitrary number
of scales. Figure 11 shows an example with 3 scales. The number
of texture accesses grows linearly with the number of scales.

7 Relief enhancement

Assuming that height maps corresponding to the input textures are
available, the system presented so far can be easily extended in or-
der to integrate them properly.

Figure 6: Multi-scale texturing: color is transferred from low to
high resolution. The same average color is transferred for the
whole fragment: a first lookup at the fragment map (high reso-
lution) leads to the fragment center; a second lookup at the low
resolution texture defines the new average color.

Pre-processing. If relief information is provided, salient fea-
tures may be either chromatic or geometric. Hence, care has to
be taken in order to account for both while creating fragments and
patches. To do so, the height map is introduced as a fourth compo-
nent (in addition to the three color channels) in the fast quantization
during the color conversion stage. Since the color space is used for
the following stages, both fragments and patches are coherent with
geometric features.

Rendering. Our texturing method is compliant with existing re-
lief rendering approaches. We used the relief mapping algo-
rithm [Policarpo et al. 2005], which only requires minor modifi-
cations of the pixel shader. However, since this algorithm locally
shifts texture coordinates according to the viewing direction in or-
der to account for parallax effects, using height maps for other lev-
els than the coarsest one is not trivial. Therefore we do not consider
multi-scale for relief rendering: we first compute the texture coor-
dinates shifting from the coarsest level height map, and then textur-
ing is performed as described in the previous sections by using the
modified coordinates.

Height map creation tool. In the case where no height map is
available, we propose a simple approach to create one from a given
texture. The principle is the following: i) a local descriptor is com-
puted at every texel to characterize features, ii) the user provides
height values for a few selected texels, iii) the provided values are
propagated to the whole texture according to the similarity between
local descriptors. The computation is fast enough to provide inter-
active edition (see figure 7) such that the user can refine the map by
adding points iteratively.

208:6 • K. Vanhoey et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

Figure 7: Height map creation tool. A few points are manually
selected by the user and assigned a height value. The full height
map is then automatically computed by averaging specified height
values according to our similarity measure. An interactive preview
gives the possibility to iteratively refine the result by selecting ad-
ditional points.

This tool acts as a complement to usual tools like shape from shad-
ing (SfS), which are not always well suited: they perform poorly
when color variations are barely related to illumination, they may
also rely on expert knowledge for parameter tuning and often re-
quire lighting conditions to be estimated. Like SfS, we assume
that textures are free of perspective or surface curvature related dis-
tortions, but illumination conditions can be arbitrary. We consider
cases where relief is related to the image structures. Since textures
generally show strong self-similarity [Brooks and Dodgson 2002],
we assume that similar features are likely to have similar heights.
This assumption holds for many cases of real-world textures: we
perform well on the brick wall and bark textures for instance, while
SfS fails to reconstruct a convincing height map. SfS would on the
contrary work better on textures like the crumpled paper.

The similarity descriptor proposed for texture editing [Brooks and
Dodgson 2002] is sensitive to noise, intensity, scale and rotation,
which is too constraining for our purpose. Other texture descrip-
tors, for instance based on filterbanks [Tou et al. 2009], aim at clas-
sifying patterns (i.e. feature arrangements). Conversely, we want
to classify individual features similarly to what operators like SIFT
do to characterize local image structures [Lowe 2004]. Thus we
use local gradients to characterize texels. SIFT is however invariant
to rotations and scales, which might be too loose for textures. Our
local descriptor remains therefore sensitive to size and rotation, ex-
cept for small angles or scale variations. It is computed from the
variation coordinate v and is applied independently on each domi-
nant color cluster (see section 4).

Considering image v corresponding to our variation coordinate, we
build a pyramid of Gaussians by convolving v by kernels of increas-
ing size σ: vσ = Gσ ∗ v. The descriptor of a given texel p is then
expressed as the gradients of vσ computed at p and its 8 neighbors:

{∇vσ(p+ d)}d∈{−1,0,1}2, σ∈[1,Nσ] (6)

In practice, we use Nσ = 6. To evaluate similarity with another
texel p′, we compute a distance consisting of a sum of lengths of
gradient differences:

d(p,p′) =
∑
σ,d

∥∥∇vσ(p+ d)−∇vσ(p′ + d)
∥∥ . (7)

Figure 8: Comparison to Wang tiling. Top: the underlying rec-
tilinear grid remains perceivable with Wang tiles using 2 different
borders (16 tiles). Bottom: our method (3 contents for 14, 10 and
18 patches respectively) discards repetition effects with only one
tile.

To allow for small rotations we compute d w.r.t. ±π/8 rotated de-
scriptors and keep the minimal value.

Based on a few selected texels for which height values are specified
by the user, the final height map is reconstructed by propagating
these values to the whole texture. In order to avoid staircase effects,
the height of each texel is defined as the weighted average of the
three closest selected texels (in terms of the distance d within its
dominant color cluster), with weights inversely proportional to d.

8 Results

Mono-scale texturing. Figure 8 shows examples of infinite tex-
turing (bottom) compared to Wang tiling (top). It shows that Wang
tiles with only two borders cannot sufficiently break the visible
grid artifact (the same applies to corner tiles with only 2 corners),
whereas stochastic distribution solves well this problem in our case
at a much lower memory cost. Seams are hidden by texture mask-
ing, as expected by our design of fragments, patches and content
selection. As a result, patch content exchange generates consistent
non-periodic textures even for those having complex realistic fea-
tures (see flowers in figure 8 bottom).

Multi-scale texturing. The blending between two textures rep-
resenting different scales is illustrated on several examples in fig-
ures 9 and 10. The coarse scale colors are propagated to the fine
scale such that rendering is consistent across the resolutions. Fine
details are consistently added in the close views: the transition be-
tween the scales is smooth and free of artifacts.

Though our method provides no high-quality pre-computed tex-
ture synthesis but on-the-fly generation and blending, our results
are competitive w.r.t. Multiscale Texture Synthesis (MTS) [Han
et al. 2008]. Figure 11 shows a comparison between both tech-
niques using two and three input textures. Compared to MTS, our
method has the advantage of texturing infinite surfaces on-the-fly.
We can also interactively change all parameters: blending func-
tions, scale ratios, color transfer functions, etc. Moreover, our color
space allows for an increased flexibility in choosing how individual
dominant colors are transferred and blended. Because of linearity,
dominant colors and local variations can be handled separately and
independently in formula 5. For instance, the user can choose a
different color transfer, as illustrated in left-hand side example of

On-the-Fly Multi-Scale Infinite Texturing from Example • 208:7

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

Figure 9: Multi-scale texture blending: two textures (top) are smoothly blended and consistently rendered at different resolutions.

Figure 10: Multi-scale texturing on an “infinite” surface.

figure 11: we preserve the blue dominant color of the intermediate
scale, while transferring yellow and orange from the coarse scale.
The variational component may also be individually controlled so
as to force variations’ preservation from either scale.

Relief enhancement. Figure 12 shows how relief enhancement
improves realism compared to flat texturing. The addition of ge-
ometric details is especially visible on silhouettes and shading ef-
fects. Using our interactive height map creation tool (figure 7), less
than 10 selected texels and corresponding heights, assigned in less
than 30 seconds were necessary to generate realistic height maps.

Performance. Any of the pre-processing stages is computed
within a few seconds while rendering is real-time. To assess the
impact of each of the contributions presented above, we measured
rendering frame-rates for different texturing methods (from no tex-
turing at all up to our multi-scale relief-enhanced texturing). Mea-
surements were made for a 1200 × 800 framebuffer on a laptop
with a GeForce GT555M GPU having 2GB of dedicated RAM,
thus demonstrating that no latest high performance graphics board
is needed to reach interactivity.

Figure 11: Comparison to “Multiscale Texture Synthesis”. Though
we only use blending, our results are visually competitive. The key
is that our approach is an order faster and works on-the-fly.

Model Forest Caesar Dino

#t
ex

tu
re

s

m
em

or
y

#a
cc

es
se

s
triangles 12800 33134 47960

No texturing 65 fps 31 fps 22 fps 0 0 0
Wang tiling 88% 84% 86% 1 16 1(16 tiles)
Our method 83% 84% 86% 2 2 2(1 scale, 1 tile)
Our method 46% 45% 45% 5 5 7(2 scales)
Our method 25% 35% 41% 5 5 7+24(2 scales + relief)

Table 1: Comparison of performances (relative frame rates of the
rendering stage). The number of textures, the memory load (number
of tiles) and the number of texture accesses in the pixel shader are
shown. Object names refer to figures 9 and 10.

208:8 • K. Vanhoey et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

Figure 12: Relief enhancement significantly improves realism.
Left: flat texturing. Right: relief-enhanced texturing. Height maps
have been reconstructed interactively in less than 30 seconds. From
top to bottom, 8, 9 and 4 clicks were respectively necessary.

Table 1 compares timings for three objects. Absolute frame-rates
differ for each object depending on the number of pixels covered.
Mono-scale patch content exchange is of equivalent speed com-
pared to Wang tiling, though requiring a second texture access (for
the patch map). Adding a second scale of resolution divides the
frame-rate by two due to additional accesses. Each new scale re-
quires three more texture maps (color texture, patch map and frag-
ment map). Relief enhancement with parallax effects has been com-
puted for the coarse texture only. It is done by (ray-tracer based)
relief mapping [Policarpo et al. 2005] requiring many texture ac-
cesses. Implementing a geometry shader would drastically improve
the performance.

Memory cost. Each input tile (one per scale) requires two GPU
texture maps: one 3-channel texture map for storing the dominant
color index, the variation and the height, and a 2-channel texture
map for storing fragments. Each texture scale requires subsequently
at most three tiles (to be compared with at least 16 tiles for Wang
tiling). A two-scale rendering required at most 12MB of memory
for the examples of this paper. This amount increases when addi-
tional mipmapping is used.

Limitations. Fragmentation is based on the assumption that there
are sufficient contrasts in the texture image. If the image contains
too smooth variations (low contrasts), fragmentation will fail, re-
sulting in too few and too large fragments. The maximal size pa-
rameter (section 5.1) will then split them up and seams may become
apparent at rendering. Figure 13 shows such an example.
A surface parameterization is also required by our approach, mak-
ing it prone to texture distortions and discontinuities. Finally, relief
enhancement only considers height fields. This geometric represen-
tation is limiting since it cannot represent complex structures such
as fur, raffia weaves or yarn.

Figure 13: Failure of the fragmentation because of too low con-
trasts. Seams are visible after color transfer.

9 Conclusions

We have presented a framework for modeling example-based infi-
nite textures generated on-the-fly. It improves over tiling by pre-
defining several exchangeable contents that can be randomly se-
lected during real-time texturing. It thus breaks repetition effects
while remaining compact. Multi-scale is also smartly integrated
in the process. Indeed, we define a feature-aware color transfer
method that produces smooth and consistent transitions between
multiple scales. It can moreover be enhanced with relief. The over-
all coherence relies on the detection of small features (fragments)
that i) have salient borders used to hide seams for content exchange
or color transfer, ii) encompass a single unitary feature used for
consistent color transfer, iii) are clustered for defining patches with
exchangeable contents encompassing several features, thus break-
ing repetition. Results report unprecedented quality and speed for
infinite texturing using such a compact example-based representa-
tion. We also provide a simple yet efficient tool for interactively
creating an elevation map without expert knowledge requirements.

This paper calls for many future works. Firstly, our segmentation
algorithm fulfills our requirements for this work, but can probably
be improved. It would be interesting to take advantage of some
good properties of texture segmentation algorithms which are not
trivial to adapt to our purpose. Moreover, our color space defines a
few dominant colors and separates fine variations. We have shown
that it provides flexibility in color transfer and blending. It would
be worth to go deeper into the modeling of transfers: an interactive
transfer modeling tool would be useful.

So far, we have considered only one single texture per scale. A
valuable extension would consist in dealing with multiple textures
for each scale. Imagine a coarse scale being a brick wall: such an
approach could differentiate, at the fine scale, one texture for the
bricks and another for the concrete.

Relief reconstruction using local descriptors also opens the way to
some future directions. We believe that similar descriptors may be
used to reconstruct a geometric information not limited to height
fields. We could for instance imagine that the user models a coarse
polygonal shape of the texture element and the system reconstructs
distributions and deformations from the image, so as to synthesize
similar textures in full 3D.

Finally, we think that paying more attention to perception could
help to further improve texture synthesis for both quality and speed.

On-the-Fly Multi-Scale Infinite Texturing from Example • 208:9

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

Acknowledgements

We thank Olivier Génevaux for his technical support, as well as the
reviewers and referees for their precious feedback.

References

ACHANTA, R., SHAJI, A., SMITH, K., LUCCHI, A., FUA, P.,
AND SUSSTRUNK, S. 2012. Slic superpixels compared to state-
of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach.
Intell. 34, 11 (Nov.), 2274–2282.

BOSCH, C., LAFFONT, P.-Y., RUSHMEIER, H., DORSEY, J., AND
DRETTAKIS, G. 2011. Image-guided weathering: A new ap-
proach applied to flow phenomena. ACM Trans. Graph. 30, 3
(May), 20:1–20:13.

BOURQUE, E., AND DUDEK, G. 2004. Procedural texture match-
ing and transformation. Comp. Graph. Forum 23, 3, 461–468.

BROOKS, S., AND DODGSON, N. 2002. Self-similarity based
texture editing. In ACM SIGGRAPH 2002 papers, ACM, New
York, NY, USA, 653–656.

CHEN, Y., TONG, X., WANG, J., LIN, S., GUO, B., AND SHUM,
H.-Y. 2004. Shell texture functions. In ACM SIGGRAPH 2004
Papers, ACM, New York, NY, USA, 343–353.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003.
Wang tiles for image and texture generation. In ACM SIG-
GRAPH 2003 Papers, ACM, New York, NY, USA, 287–294.

DISCHLER, J.-M., MARITAUD, K., AND GHAZANFARPOUR, D.
2002. Coherent bump map recovery from a single texture image.
In Proc. of Graphics Interface, 201–208.

EBERT, D. S., MUSGRAVE, F. K., PEACHEY, D., PERLIN, K.,
AND WORLEY, S. 2002. Texturing and Modeling: A Procedu-
ral Approach, 3rd ed. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

GALERNE, B., LAGAE, A., LEFEBVRE, S., AND DRETTAKIS, G.
2012. Gabor noise by example. ACM Trans. Graph. 31, 4 (July),
73:1–73:9.

GERVAUTZ, M., AND PURGATHOFER, W. 1990. A simple method
for color quantization: Octree quantization. In Graphics Gems,
A. S. Glassner, Ed. Academic Press, 287–293.

GILET, G., AND DISCHLER, J.-M. 2010. Procedural descriptions
of anisotropic noisy textures by example. In Eurographics 2010,
Short Paper, Eurographics Association.

HAN, C., RISSER, E., RAMAMOORTHI, R., AND GRINSPUN, E.
2008. Multiscale texture synthesis. In ACM SIGGRAPH 2008
papers, ACM, New York, NY, USA, 51:1–51:8.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LISCHINSKI, D.
2006. Recursive wang tiles for real-time blue noise. In ACM
SIGGRAPH 2006 Papers, ACM, New York, NY, USA, 509–518.

KWATRA, V., SCHÖDL, A., ESSA, I., TURK, G., AND BOBICK,
A. 2003. Graphcut textures: image and video synthesis using
graph cuts. In ACM SIGGRAPH 2003 Papers, ACM, New York,
NY, USA, 277–286.

LAGAE, A., AND DUTRÉ, P. 2005. A procedural object distribu-
tion function. ACM Trans. Graph. 24, 4 (Oct.), 1442–1461.

LAGAE, A., AND DUTRÉ, P. 2006. An alternative for Wang tiles:
Colored edges versus colored corners. ACM Trans. Graph. 25, 4
(Oct.), 1442–1459.

LAINE, S., AND KARRAS, T. 2010. Efficient sparse voxel octrees.
In Proc. of the 2010 ACM SIGGRAPH symp. on Interactive 3D
Graphics and Games, ACM, New York, NY, USA, 55–63.

LEFEBVRE, S., AND HOPPE, H. 2005. Parallel controllable texture
synthesis. In ACM SIGGRAPH 2005 Papers, ACM, New York,
NY, USA, 777–786.

LOSASSO, F., AND HOPPE, H. 2004. Geometry clipmaps: terrain
rendering using nested regular grids. In ACM SIGGRAPH 2004
Papers, ACM, New York, NY, USA, 769–776.

LOWE, D. G. 2004. Distinctive image features from scale-invariant
keypoints. Int. J. Comput. Vision 60, 2 (Nov.), 91–110.

MA, W.-C., JONES, A., CHIANG, J.-Y., HAWKINS, T., FRED-
ERIKSEN, S., PEERS, P., VUKOVIC, M., OUHYOUNG, M.,
AND DEBEVEC, P. 2008. Facial performance synthesis us-
ing deformation-driven polynomial displacement maps. In ACM
SIGGRAPH Asia 2008 papers, ACM, New York, NY, USA,
121:1–121:10.

MÜLLER, P., ZENG, G., WONKA, P., AND VAN GOOL, L. 2007.
Image-based procedural modeling of facades. In ACM SIG-
GRAPH 2007 papers, ACM, New York, NY, USA, 85:1–85:9.

OMER, I., AND WERMAN, M. 2004. Color lines: image specific
color representation. In Proc. of the 2004 IEEE conf. on Com-
puter Vision and Pattern Recognition, IEEE Computer Society,
Washington, DC, USA, 946–953.

PERAZZI, F., KRÄHENBÜHL, P., PRITCH, Y., AND HORNUNG,
A. 2012. Saliency filters: Contrast based filtering for salient
region detection. In Proc. of the 2012 IEEE conf. on Computer
Vision and Pattern Recognition, IEEE Computer Society, Wash-
ington, DC, USA, 733–740.

PERLIN, K. 1985. An image synthesizer. In ACM SIGGRAPH
1985 papers, ACM, New York, NY, USA, 287–296.

POLICARPO, F., OLIVEIRA, M. M., AND COMBA, J. A. L. D.
2005. Real-time relief mapping on arbitrary polygonal surfaces.
In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA,
935–935.

TOU, J. Y., TAY, Y. H., AND LAU, P. Y. 2009. Recent trends in
texture classification: a review. In Proc. of the 2009 symp. on
Progress in Information and Communication Technology.

TREIB, M., REICHL, F., AUER, S., AND WESTERMANN, R.
2012. Interactive editing of gigasample terrain fields. Comp.
Graph. Forum 31, 2pt2 (May), 383–392.

WEI, L.-Y., LEFEBVRE, S., KWATRA, V., AND TURK, G. 2009.
State of the art in example-based texture synthesis. In Euro-
graphics 2009, State of the Art Report, Eurographics Associa-
tion.

WU, H., DORSEY, J., AND RUSHMEIER, H. 2011. Physically-
based interactive bi-scale material design. In ACM SIGGRAPH
Asia 2011 papers, ACM, New York, NY, USA, 145:1–145:10.

ZENG, G., MATSUSHITA, Y., QUAN, L., AND SHUM, H.-Y.
2005. Interactive shape from shading. In Proc. of the 2005 IEEE
conf. on Computer Vision and Pattern Recognition, IEEE Com-
puter Society, Washington, DC, USA, 343–350.

ZHANG, R., TSAI, P.-S., CRYER, J. E., AND SHAH, M. 1999.
Shape from shading: A survey. IEEE Trans. Pattern Anal. Mach.
Intell. 21, 8 (Aug.), 690–706.

208:10 • K. Vanhoey et al.

ACM Transactions on Graphics, Vol. 32, No. 6, Article 208, Publication Date: November 2013

